Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes

Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes We have synthesized polycarbonates having oxyethylene (OE) end groups from alternating copolymerization of CO2 with glycidyl ether monomers, and studied the effect of OE length on the ion-conductive properties of electrolytes with lithium bis-(fluorosulfonyl) imide (LiFSI). Polycarbonate-based electrolytes exhibited obvious dependence of the ion-conductive behavior on the salt concentration; the conductivity of PEtGEC (polycarbonate possessing ethoxy side groups) electrolyte increased with increasing salt concentration, and the conductivity of PME1C (polycarbonate possessing 2-methoxyethoxy side groups) and PME2C (polycarbonate possessing 2-(2-methoxy)ethoxy side groups) electrolytes decreased at low salt concentration but then increased dramatically with increasing concentration. PME2C-LiFSI (376 mol%) had the greatest conductivity of all the electrolytes. We also measured the Li transference numbers (tLi+) of polycarbonate-based electrolytes; the values of tLi+ for LiFSI electrolytes (188 mol%) decreased with increasing number of OE chains. This indicates that dissociated Li ions are trapped and that migration is inhibited by the OE side groups. For the PEtGEC electrolyte, tLi+ was very high, more than 0.7, because the polymer has only one ether oxygen atom in the side chain, making it difficult to form stable solvation structures. This study suggests a new polymer matrix combining ether units to give high conductivity at low salt concentrations with a carbonate main chain for high tLi+. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Elsevier

Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes

Loading next page...
 
/lp/elsevier/effect-of-oxyethylene-side-chains-on-ion-conductive-properties-of-iOq90A9e1o
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0032-3861
D.O.I.
10.1016/j.polymer.2015.12.036
Publisher site
See Article on Publisher Site

Abstract

We have synthesized polycarbonates having oxyethylene (OE) end groups from alternating copolymerization of CO2 with glycidyl ether monomers, and studied the effect of OE length on the ion-conductive properties of electrolytes with lithium bis-(fluorosulfonyl) imide (LiFSI). Polycarbonate-based electrolytes exhibited obvious dependence of the ion-conductive behavior on the salt concentration; the conductivity of PEtGEC (polycarbonate possessing ethoxy side groups) electrolyte increased with increasing salt concentration, and the conductivity of PME1C (polycarbonate possessing 2-methoxyethoxy side groups) and PME2C (polycarbonate possessing 2-(2-methoxy)ethoxy side groups) electrolytes decreased at low salt concentration but then increased dramatically with increasing concentration. PME2C-LiFSI (376 mol%) had the greatest conductivity of all the electrolytes. We also measured the Li transference numbers (tLi+) of polycarbonate-based electrolytes; the values of tLi+ for LiFSI electrolytes (188 mol%) decreased with increasing number of OE chains. This indicates that dissociated Li ions are trapped and that migration is inhibited by the OE side groups. For the PEtGEC electrolyte, tLi+ was very high, more than 0.7, because the polymer has only one ether oxygen atom in the side chain, making it difficult to form stable solvation structures. This study suggests a new polymer matrix combining ether units to give high conductivity at low salt concentrations with a carbonate main chain for high tLi+.

Journal

PolymerElsevier

Published: Feb 10, 2016

References

  • Electrochem. Commun.
    Sun, B.; Mindemark, J.; Edstrom, K.; Brandell, D.
  • Chem. Commun.
    Tominaga, Y.; Yamazaki, K.
  • Polym. J.
    Munshi, M.; Owens, B.; Nguyen, S.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off