Effect of microstructure on the erosion behavior of carbon steel

Effect of microstructure on the erosion behavior of carbon steel Solid particle erosion of steel is a function of abrasive particle properties, target material, erodent velocity, abrasive feed rate, impact angle and the environment. Steel microstructure, which directly influences its hardness and ductility, plays an important role in determining the erosion rate. In this study, the effect of microstructure on the erosion of AISI 1018 (pearlite+ferrite) and AISI 1080 (pearlite) steel is investigated. Particle velocities and impact angles employed were as follows: 36, 47, 56 and 81ms−1 at 30°, 45°, 60° and 90°, respectively. Nano-indentation was performed and it was found that hardness of the various microstructures has an inverse relationship to erosion rate. It was also found that, contrary to expectation, at low impact angle, AISI 1018 steel exhibits higher erosion resistance than AISI 1080 steel. Surface and sub-surface examinations were conducted using scanning electron microscopy. Ploughing, metal cutting and delamination are identified as dominant mechanisms during erosion of AISI 1018 and AISI 1080 steel. It was observed that pearlitic and ferritic microstructures respond differently to erosion and that the orientation of pearlite plates with respect to the impinging particle affects the extent of metal removal. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wear Elsevier

Effect of microstructure on the erosion behavior of carbon steel

Loading next page...
 
/lp/elsevier/effect-of-microstructure-on-the-erosion-behavior-of-carbon-steel-qRpQMQBqvv
Publisher
Elsevier
Copyright
Copyright © 2014 Elsevier B.V.
ISSN
0043-1648
eISSN
1873-2577
D.O.I.
10.1016/j.wear.2014.12.004
Publisher site
See Article on Publisher Site

Abstract

Solid particle erosion of steel is a function of abrasive particle properties, target material, erodent velocity, abrasive feed rate, impact angle and the environment. Steel microstructure, which directly influences its hardness and ductility, plays an important role in determining the erosion rate. In this study, the effect of microstructure on the erosion of AISI 1018 (pearlite+ferrite) and AISI 1080 (pearlite) steel is investigated. Particle velocities and impact angles employed were as follows: 36, 47, 56 and 81ms−1 at 30°, 45°, 60° and 90°, respectively. Nano-indentation was performed and it was found that hardness of the various microstructures has an inverse relationship to erosion rate. It was also found that, contrary to expectation, at low impact angle, AISI 1018 steel exhibits higher erosion resistance than AISI 1080 steel. Surface and sub-surface examinations were conducted using scanning electron microscopy. Ploughing, metal cutting and delamination are identified as dominant mechanisms during erosion of AISI 1018 and AISI 1080 steel. It was observed that pearlitic and ferritic microstructures respond differently to erosion and that the orientation of pearlite plates with respect to the impinging particle affects the extent of metal removal.

Journal

WearElsevier

Published: May 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off