Effect of deep injection on field-scale emissions of 1,3-dichloropropene and chloropicrin from bare soil

Effect of deep injection on field-scale emissions of 1,3-dichloropropene and chloropicrin from... Fumigating soil is important for the production of many high-value vegetable, fruit, and tree crops, but fumigants are toxic pesticides with relatively high volatility, which can lead to significant atmospheric emissions. A field experiment was conducted to measure emissions and subsurface diffusion of a mixture of 1,3-dichloropropene (1,3-D) and chloropicrin after shank injection to bare soil at 61 cm depth (i.e., deep injection). Three on-field methods, the aerodynamic (ADM), integrated horizontal flux (IHF), and theoretical profile shape (TPS) methods, were used to obtain fumigant flux density and cumulative emission values. Two air dispersion models (CALPUFF and ISCST3) were also used to back-calculate the flux density using air concentration measurements surrounding the fumigated field. Emissions were continuously measured for 16 days and the daily peak emission rates for the five methods ranged from 13 to 33 μg m−2 s−1 for 1,3-D and 0.22–3.2 μg m−2 s−1 for chloropicrin. Total 1,3-D mass lost to the atmosphere was approximately 23–41 kg ha−1, or 15–27% of the applied active ingredient and total mass loss of chloropicrin was <2%. Based on the five methods, deep injection reduced total emissions by approximately 2–24% compared to standard fumigation practices where fumigant injection is at 46 cm depth. Given the relatively wide range in emission-reduction percentages, a fumigant diffusion model was used to predict the percentage reduction in emissions by injecting at 61 cm, which yielded a 21% reduction in emissions. Significant reductions in emissions of 1,3-D and chloropicrin are possible by injecting soil fumigants deeper in soil. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Atmospheric Environment Elsevier

Effect of deep injection on field-scale emissions of 1,3-dichloropropene and chloropicrin from bare soil

Loading next page...
 
/lp/elsevier/effect-of-deep-injection-on-field-scale-emissions-of-1-3-bGwSdQ8z6n
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
1352-2310
eISSN
1873-2844
D.O.I.
10.1016/j.atmosenv.2016.04.042
Publisher site
See Article on Publisher Site

Abstract

Fumigating soil is important for the production of many high-value vegetable, fruit, and tree crops, but fumigants are toxic pesticides with relatively high volatility, which can lead to significant atmospheric emissions. A field experiment was conducted to measure emissions and subsurface diffusion of a mixture of 1,3-dichloropropene (1,3-D) and chloropicrin after shank injection to bare soil at 61 cm depth (i.e., deep injection). Three on-field methods, the aerodynamic (ADM), integrated horizontal flux (IHF), and theoretical profile shape (TPS) methods, were used to obtain fumigant flux density and cumulative emission values. Two air dispersion models (CALPUFF and ISCST3) were also used to back-calculate the flux density using air concentration measurements surrounding the fumigated field. Emissions were continuously measured for 16 days and the daily peak emission rates for the five methods ranged from 13 to 33 μg m−2 s−1 for 1,3-D and 0.22–3.2 μg m−2 s−1 for chloropicrin. Total 1,3-D mass lost to the atmosphere was approximately 23–41 kg ha−1, or 15–27% of the applied active ingredient and total mass loss of chloropicrin was <2%. Based on the five methods, deep injection reduced total emissions by approximately 2–24% compared to standard fumigation practices where fumigant injection is at 46 cm depth. Given the relatively wide range in emission-reduction percentages, a fumigant diffusion model was used to predict the percentage reduction in emissions by injecting at 61 cm, which yielded a 21% reduction in emissions. Significant reductions in emissions of 1,3-D and chloropicrin are possible by injecting soil fumigants deeper in soil.

Journal

Atmospheric EnvironmentElsevier

Published: Jul 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off