Effect of aqueous Si/Mg ratio and pH on the nucleation and growth of sepiolite at 25 °C

Effect of aqueous Si/Mg ratio and pH on the nucleation and growth of sepiolite at 25 °C Sepiolite [Mg4Si6O15(OH)2·6H2O] is a trioctahedral 2:1 Mg-silicate that has been often used to reconstruct the evolution of sedimentary environments and facies in the geological record. To date, however, the reaction paths underlying sepiolite formation are poorly constrained and most of the existing models are based on empirical observations. In order to shed light on the mechanisms controlling the formation of this mineral phase, in the present study, sepiolite was precipitated at 25 ± 1 °C from modified seawater and MgCl2 solutions undersaturated with respect to brucite and amorphous silica. Although a suite of hydrous Mg-silicates, such as kerolite, saponite, stevensite and talc, were oversaturated in the solutions at a higher level relative to sepiolite at any time of reaction, poorly crystallized, aluminous sepiolite was the only precipitate after 91 days. The precipitated sepiolite [Mg3.4-3.8Al0.1-0.4)∑3.8-3.9(Si5.9-6.0Al0-0.1)O15(OH)2·nH2O] shares a number of structural and chemical similarities with natural sepiolite, such as a fibrous crystal shape and an atomic Si/(Si + Mg+Al) ratio of ∼0.61.The proposed reaction path for the formation of sepiolite is based on the temporal evolution of the chemical compositions of the experimental solution and solids: (i) Nucleation and growth of Al-sepiolite occurred during the first 8 days of the experimental runs via condensation and polymerization of SiOH tetrahedra onto Mg–Al–O–OH template sheets at a precipitation rate of ∼2.19 ± 0.01 × 10−10 mol s−1. (ii) At decreasing pH and in the absence of [Al]aq this intermediate phase transformed into aluminous sepiolite at a slower crystal growth rate of ∼1.08 ± 0.02 × 10−12 mol s−1. This finding explains the high abundances of sepiolite in highly alkaline, evaporitic, lacustrine and soil environments, where the growth rates of sepiolite are considered faster (10−11 to 10−10 mol s−1, Brady, 1992). We propose that (i) low rates of Mg2+ ion dehydration and silica condensation and polymerization at the surface of the initial precipitate, (ii) the formation of MgS040 aquo-complexes and (iii) the reduced sorption rates of [Si]aq and [Mg]aq at the active growth sites on sepiolite surfaces at pH ≤ 8.3 retard the precipitation of sepiolite in marine-diagenetic environments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geochimica et Cosmochimica Acta Elsevier

Effect of aqueous Si/Mg ratio and pH on the nucleation and growth of sepiolite at 25 °C

Loading next page...
 
/lp/elsevier/effect-of-aqueous-si-mg-ratio-and-ph-on-the-nucleation-and-growth-of-uSRYnhyCKf
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0016-7037
eISSN
1872-9533
D.O.I.
10.1016/j.gca.2018.02.027
Publisher site
See Article on Publisher Site

Abstract

Sepiolite [Mg4Si6O15(OH)2·6H2O] is a trioctahedral 2:1 Mg-silicate that has been often used to reconstruct the evolution of sedimentary environments and facies in the geological record. To date, however, the reaction paths underlying sepiolite formation are poorly constrained and most of the existing models are based on empirical observations. In order to shed light on the mechanisms controlling the formation of this mineral phase, in the present study, sepiolite was precipitated at 25 ± 1 °C from modified seawater and MgCl2 solutions undersaturated with respect to brucite and amorphous silica. Although a suite of hydrous Mg-silicates, such as kerolite, saponite, stevensite and talc, were oversaturated in the solutions at a higher level relative to sepiolite at any time of reaction, poorly crystallized, aluminous sepiolite was the only precipitate after 91 days. The precipitated sepiolite [Mg3.4-3.8Al0.1-0.4)∑3.8-3.9(Si5.9-6.0Al0-0.1)O15(OH)2·nH2O] shares a number of structural and chemical similarities with natural sepiolite, such as a fibrous crystal shape and an atomic Si/(Si + Mg+Al) ratio of ∼0.61.The proposed reaction path for the formation of sepiolite is based on the temporal evolution of the chemical compositions of the experimental solution and solids: (i) Nucleation and growth of Al-sepiolite occurred during the first 8 days of the experimental runs via condensation and polymerization of SiOH tetrahedra onto Mg–Al–O–OH template sheets at a precipitation rate of ∼2.19 ± 0.01 × 10−10 mol s−1. (ii) At decreasing pH and in the absence of [Al]aq this intermediate phase transformed into aluminous sepiolite at a slower crystal growth rate of ∼1.08 ± 0.02 × 10−12 mol s−1. This finding explains the high abundances of sepiolite in highly alkaline, evaporitic, lacustrine and soil environments, where the growth rates of sepiolite are considered faster (10−11 to 10−10 mol s−1, Brady, 1992). We propose that (i) low rates of Mg2+ ion dehydration and silica condensation and polymerization at the surface of the initial precipitate, (ii) the formation of MgS040 aquo-complexes and (iii) the reduced sorption rates of [Si]aq and [Mg]aq at the active growth sites on sepiolite surfaces at pH ≤ 8.3 retard the precipitation of sepiolite in marine-diagenetic environments.

Journal

Geochimica et Cosmochimica ActaElsevier

Published: Apr 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial