Effect of anthropogenic factors, landscape structure, land relief, soil and climate on risk of alien plant invasion at regional scale

Effect of anthropogenic factors, landscape structure, land relief, soil and climate on risk of... We compared the effectiveness of explanatory variables representing different environmental spheres on the risk of alien plant invasion. Using boosted regression trees (BRT), we assessed the effect of anthropogenic factors, soil variables, land relief, climate and landscape structure on neophyte richness (NR) (alien plant species introduced after the 15th century). Data on NR were derived from a 2 × 2 km grid covering a total area of 31,200 km2 of the Carpathian massif and its foreground, Central Europe. Each of the examined environmental spheres explained NR, but their explanatory ability varied more than two-folds. Climatic variables explained the highest fraction of deviation, followed by anthropogenic factors, soil type, land relief and landscape structure. The global model, which incorporated crucial variables from all studied environmental spheres, had the best explanatory ability. However, the explained deviation was far smaller than the sum of the deviations explained by the single-sphere models. The global model showed that the deviation that could be explained by variables representing particular spheres, overlapped. The variables representing landscape structure were not included in the global model as they were found to be redundant. Finally, the climatic variables explained a smaller fraction of the deviation than the anthropogenic factors. The partial dependency plots allowed the assessment of the course of dependencies between NR and particular explanatory variables after eliminating the average effect of all other variables. The relationships were usually curvilinear and revealed some values of environmental variables beyond which NR changed considerably. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Failure Analysis Elsevier

Effect of anthropogenic factors, landscape structure, land relief, soil and climate on risk of alien plant invasion at regional scale

Loading next page...
 
/lp/elsevier/effect-of-anthropogenic-factors-landscape-structure-land-relief-soil-v2gPr00YM9
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1350-6307
eISSN
1873-1961
D.O.I.
10.1016/j.scitotenv.2018.01.131
Publisher site
See Article on Publisher Site

Abstract

We compared the effectiveness of explanatory variables representing different environmental spheres on the risk of alien plant invasion. Using boosted regression trees (BRT), we assessed the effect of anthropogenic factors, soil variables, land relief, climate and landscape structure on neophyte richness (NR) (alien plant species introduced after the 15th century). Data on NR were derived from a 2 × 2 km grid covering a total area of 31,200 km2 of the Carpathian massif and its foreground, Central Europe. Each of the examined environmental spheres explained NR, but their explanatory ability varied more than two-folds. Climatic variables explained the highest fraction of deviation, followed by anthropogenic factors, soil type, land relief and landscape structure. The global model, which incorporated crucial variables from all studied environmental spheres, had the best explanatory ability. However, the explained deviation was far smaller than the sum of the deviations explained by the single-sphere models. The global model showed that the deviation that could be explained by variables representing particular spheres, overlapped. The variables representing landscape structure were not included in the global model as they were found to be redundant. Finally, the climatic variables explained a smaller fraction of the deviation than the anthropogenic factors. The partial dependency plots allowed the assessment of the course of dependencies between NR and particular explanatory variables after eliminating the average effect of all other variables. The relationships were usually curvilinear and revealed some values of environmental variables beyond which NR changed considerably.

Journal

Engineering Failure AnalysisElsevier

Published: Sep 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off