Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine

Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary... Early fault diagnosis of rolling bearings is crucial to operating and maintenance cost reduction of the equipment with bearings. This paper aims to propose a novel early fault feature extraction method based on the proposed hierarchical symbol dynamic entropy (HSDE) and the binary tree support vector machine (BT-SVM). Multiscale symbolic dynamic entropy (MSDE) has been recently proposed to characterize the dynamical behavior of time series. MSDE has several merits comparing with multiscale sample entropy (MSE) and multiscale permutation entropy (MPE), such as high computational efficiency and robustness to noise. However, MSDE only utilizes the fault information in the low frequency components and consequently the fault information hidden in the high frequency components is discarded. To address this shortcoming, a new method, namely HSDE, is proposed to extract the fault information in the high frequency components. Then, the BT-SVM is utilized to automatically complete the fault type identification. The effectiveness of the proposed method is validated using simulated and experimental vibration signals. Meanwhile, a comparison is conducted between MPE, hierarchical permutation entropy (HPE), MSE, hierarchical sample entropy (HSE), MSDE and HSDE. Results show that the proposed method performs best to recognize the early fault types of rolling bearings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Sound and Vibration Elsevier

Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine

Loading next page...
 
/lp/elsevier/early-fault-diagnosis-of-rolling-bearings-based-on-hierarchical-symbol-CajQrzOXUk
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0022-460X
eISSN
1095-8568
D.O.I.
10.1016/j.jsv.2018.04.036
Publisher site
See Article on Publisher Site

Abstract

Early fault diagnosis of rolling bearings is crucial to operating and maintenance cost reduction of the equipment with bearings. This paper aims to propose a novel early fault feature extraction method based on the proposed hierarchical symbol dynamic entropy (HSDE) and the binary tree support vector machine (BT-SVM). Multiscale symbolic dynamic entropy (MSDE) has been recently proposed to characterize the dynamical behavior of time series. MSDE has several merits comparing with multiscale sample entropy (MSE) and multiscale permutation entropy (MPE), such as high computational efficiency and robustness to noise. However, MSDE only utilizes the fault information in the low frequency components and consequently the fault information hidden in the high frequency components is discarded. To address this shortcoming, a new method, namely HSDE, is proposed to extract the fault information in the high frequency components. Then, the BT-SVM is utilized to automatically complete the fault type identification. The effectiveness of the proposed method is validated using simulated and experimental vibration signals. Meanwhile, a comparison is conducted between MPE, hierarchical permutation entropy (HPE), MSE, hierarchical sample entropy (HSE), MSDE and HSDE. Results show that the proposed method performs best to recognize the early fault types of rolling bearings.

Journal

Journal of Sound and VibrationElsevier

Published: Aug 18, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off