Dynamics and sources of last glacial aeolian deposition in southwest France derived from dune patterns, grain-size gradients and geochemistry, and reconstruction of efficient wind directions

Dynamics and sources of last glacial aeolian deposition in southwest France derived from dune... Dune pattern, grain-size gradients and geochemistry were used to investigate the sources and dynamics of aeolian deposition during the last glacial in southwest France. The coversands form widespread fields of low-amplitude ridges (zibars), whereas Younger Dryas parabolic dunes mainly concentrate in corridors and along rivers. Spatial modelling of grain-size gradients combined with geochemical analysis points to a genetic relationship between coversands and loess, the latter resulting primarily from dust produced by aeolian abrasion of the coversands. The alluvium of the Garonne river provided also significant amounts of dust at a more local scale. The geochemical composition of loess shows much lower scattering than that of coversands, due to stronger homogenisation during transport in the atmosphere. Overall, sandy loess and loess deposits decrease in thickness away from the coversands. Dune orientation and grain-size gradients suggest that the efficient winds blew respectively from the W to the NW during the glacial, and the W-SW during the Younger Dryas. A comparison between the wind directions derived from the proxy data and those provided by palaeoclimatic simulations suggests a change of the main transport season. Ground surface conditions and their evolution throughout the year, i.e. the length of the season with snow and frozen or moist topsoil, and the seasonal distribution of wind speeds able to cause deflation are thought to have been the main factors that controlled the transport season in the study area. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quaternary Science Reviews Elsevier

Dynamics and sources of last glacial aeolian deposition in southwest France derived from dune patterns, grain-size gradients and geochemistry, and reconstruction of efficient wind directions

Loading next page...
 
/lp/elsevier/dynamics-and-sources-of-last-glacial-aeolian-deposition-in-southwest-q3YXkcMEqW
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0277-3791
eISSN
1873-457X
D.O.I.
10.1016/j.quascirev.2017.06.029
Publisher site
See Article on Publisher Site

Abstract

Dune pattern, grain-size gradients and geochemistry were used to investigate the sources and dynamics of aeolian deposition during the last glacial in southwest France. The coversands form widespread fields of low-amplitude ridges (zibars), whereas Younger Dryas parabolic dunes mainly concentrate in corridors and along rivers. Spatial modelling of grain-size gradients combined with geochemical analysis points to a genetic relationship between coversands and loess, the latter resulting primarily from dust produced by aeolian abrasion of the coversands. The alluvium of the Garonne river provided also significant amounts of dust at a more local scale. The geochemical composition of loess shows much lower scattering than that of coversands, due to stronger homogenisation during transport in the atmosphere. Overall, sandy loess and loess deposits decrease in thickness away from the coversands. Dune orientation and grain-size gradients suggest that the efficient winds blew respectively from the W to the NW during the glacial, and the W-SW during the Younger Dryas. A comparison between the wind directions derived from the proxy data and those provided by palaeoclimatic simulations suggests a change of the main transport season. Ground surface conditions and their evolution throughout the year, i.e. the length of the season with snow and frozen or moist topsoil, and the seasonal distribution of wind speeds able to cause deflation are thought to have been the main factors that controlled the transport season in the study area.

Journal

Quaternary Science ReviewsElsevier

Published: Aug 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off