Dynamical analysis on cubic polynomials of Damped Traub’s method for approximating multiple roots

Dynamical analysis on cubic polynomials of Damped Traub’s method for approximating multiple roots In this paper, the performance of a parametric family including Newton’s and Traub’s schemes on multiple roots is analyzed. The local order of convergence on nonlinear equations with multiple roots is studied as well as the dynamical behavior in terms of the damping parameter on cubic polynomials with multiple roots. The fixed and critical points, and the associated parameter plane are some of the characteristic dynamical features of the family which are obtained in this work. From the analysis of these elements we identify members of the family of methods with good numerical properties in terms of stability and efficiency both for finding the simple and multiple roots, and also other ones with very unstable behavior. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Computation Elsevier

Dynamical analysis on cubic polynomials of Damped Traub’s method for approximating multiple roots

Loading next page...
 
/lp/elsevier/dynamical-analysis-on-cubic-polynomials-of-damped-traub-s-method-for-43u0JeDFNb
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0096-3003
eISSN
1873-5649
D.O.I.
10.1016/j.amc.2018.01.043
Publisher site
See Article on Publisher Site

Abstract

In this paper, the performance of a parametric family including Newton’s and Traub’s schemes on multiple roots is analyzed. The local order of convergence on nonlinear equations with multiple roots is studied as well as the dynamical behavior in terms of the damping parameter on cubic polynomials with multiple roots. The fixed and critical points, and the associated parameter plane are some of the characteristic dynamical features of the family which are obtained in this work. From the analysis of these elements we identify members of the family of methods with good numerical properties in terms of stability and efficiency both for finding the simple and multiple roots, and also other ones with very unstable behavior.

Journal

Applied Mathematics and ComputationElsevier

Published: Jul 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off