Dynamic virtual holonomic constraints for stabilization of closed orbits in underactuated mechanical systems

Dynamic virtual holonomic constraints for stabilization of closed orbits in underactuated... This article investigates the problem of enforcing a virtual holonomic constraint (VHC) on a mechanical system with degree of underactuation one while simultaneously stabilizing a closed orbit on the constraint manifold. This problem, which to date is open, arises when designing controllers to induce complex repetitive motions in robots. In this paper, we propose a solution which relies on the parameterization of the VHC by the output of a double integrator. While the original control inputs are used to enforce the VHC, the control input of the double-integrator is designed to asymptotically stabilize the closed orbit and make the state of the double-integrator converge to zero. The proposed design is applied to the problem of making a PVTOL aircraft follow a circle on the vertical plane with a desired speed profile, while guaranteeing that the aircraft does not roll over for suitable initial conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Automatica Elsevier

Dynamic virtual holonomic constraints for stabilization of closed orbits in underactuated mechanical systems

Loading next page...
 
/lp/elsevier/dynamic-virtual-holonomic-constraints-for-stabilization-of-closed-wBO0w714BB
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0005-1098
D.O.I.
10.1016/j.automatica.2018.04.023
Publisher site
See Article on Publisher Site

Abstract

This article investigates the problem of enforcing a virtual holonomic constraint (VHC) on a mechanical system with degree of underactuation one while simultaneously stabilizing a closed orbit on the constraint manifold. This problem, which to date is open, arises when designing controllers to induce complex repetitive motions in robots. In this paper, we propose a solution which relies on the parameterization of the VHC by the output of a double integrator. While the original control inputs are used to enforce the VHC, the control input of the double-integrator is designed to asymptotically stabilize the closed orbit and make the state of the double-integrator converge to zero. The proposed design is applied to the problem of making a PVTOL aircraft follow a circle on the vertical plane with a desired speed profile, while guaranteeing that the aircraft does not roll over for suitable initial conditions.

Journal

AutomaticaElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off