Dynamic overset grids in OpenFOAM with application to KCS self-propulsion and maneuvering

Dynamic overset grids in OpenFOAM with application to KCS self-propulsion and maneuvering An implementation of the dynamic overset grid technique into naoe-FOAM-SJTU solver developed by using the open source code OpenFOAM is presented. OpenFOAM is attractive for ship hydrodynamics applications because of its high quality free surface solver and other capabilities, but it lacks the ability to perform large-amplitude motions needed for maneuvering and seakeeping problems. The implementation relies on the code Suggar to compute the domain connectivity information (DCI) dynamically at run time. Several Suggar groups can be used in multiple lagged execution mode, allowing simultaneous evaluation of several DCI sets to reduce execution time and optimize the exchange of data between OpenFOAM and Suggar processors. A towed condition of the KRISO Container Ship (KCS) are used for static overset tests, while open-water curves of the KP505 propeller and self-propulsion and zig-zag maneuvers of the KCS model are exercised to validate the dynamic implementation. For self-propulsion the ship model is fitted with the KP505 propeller, achieving self-propulsion at Fr=0.26. All self-propulsion factors are obtained using CFD results only, including those from open-water curves, towed and self-propulsion conditions. Computational results compare well with experimental data of resistance, free-surface elevation, wake flow and self-propulsion factors. Free maneuvering simulations of the HSVA KCS model appended with the HSVA propeller and a semi-balanced horn rudder are performed at constant self-propulsion propeller rotational speed. Results for a standard 10/10 zig-zag maneuver and a modified 15/1 zig-zag maneuver show good agreement with experimental data, even though relatively coarse grids are used. Grid convergence studies are performed for the open-water propeller test and bare hull KCS model to further validate the implementation of the overset grid approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ocean Engineering Elsevier

Dynamic overset grids in OpenFOAM with application to KCS self-propulsion and maneuvering

Loading next page...
 
/lp/elsevier/dynamic-overset-grids-in-openfoam-with-application-to-kcs-self-kMF0G9mKeC
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0029-8018
eISSN
1873-5258
D.O.I.
10.1016/j.oceaneng.2015.07.035
Publisher site
See Article on Publisher Site

Abstract

An implementation of the dynamic overset grid technique into naoe-FOAM-SJTU solver developed by using the open source code OpenFOAM is presented. OpenFOAM is attractive for ship hydrodynamics applications because of its high quality free surface solver and other capabilities, but it lacks the ability to perform large-amplitude motions needed for maneuvering and seakeeping problems. The implementation relies on the code Suggar to compute the domain connectivity information (DCI) dynamically at run time. Several Suggar groups can be used in multiple lagged execution mode, allowing simultaneous evaluation of several DCI sets to reduce execution time and optimize the exchange of data between OpenFOAM and Suggar processors. A towed condition of the KRISO Container Ship (KCS) are used for static overset tests, while open-water curves of the KP505 propeller and self-propulsion and zig-zag maneuvers of the KCS model are exercised to validate the dynamic implementation. For self-propulsion the ship model is fitted with the KP505 propeller, achieving self-propulsion at Fr=0.26. All self-propulsion factors are obtained using CFD results only, including those from open-water curves, towed and self-propulsion conditions. Computational results compare well with experimental data of resistance, free-surface elevation, wake flow and self-propulsion factors. Free maneuvering simulations of the HSVA KCS model appended with the HSVA propeller and a semi-balanced horn rudder are performed at constant self-propulsion propeller rotational speed. Results for a standard 10/10 zig-zag maneuver and a modified 15/1 zig-zag maneuver show good agreement with experimental data, even though relatively coarse grids are used. Grid convergence studies are performed for the open-water propeller test and bare hull KCS model to further validate the implementation of the overset grid approach.

Journal

Ocean EngineeringElsevier

Published: Nov 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off