Dynamic multimedia fate simulation of Perfluorooctane Sulfonate (PFOS) from 1981 to 2050 in the urbanizing Bohai Rim of China

Dynamic multimedia fate simulation of Perfluorooctane Sulfonate (PFOS) from 1981 to 2050 in the... Perfluorooctane sulfonate (PFOS) and related substances are widely used in various industrial and commercial applications in China that ultimately discharge sufficient quantities of PFOS to the environment. It remains unclear how emissions of PFOS ultimately affect its concentrations as well as its fate in the environment. In this study, an improved Berkeley-Trent (BETR) multimedia model is developed to predict the PFOS levels with spatial and temporal distributions on unsteady state mode from 1981 to 2050, by taking the Bohai Rim of China as a case. The results showed that the modeled concentrations agreed well with the measured data. According to the model, PFOS concentrations in fresh water peaked in some months after the peak emission (2008 or 2009), whereas in urban soil the concentrations increased to peak slightly later (around 2014). Among the selected regions, Beijing and Tianjin were simulated with higher PFOS levels in the past and present because of their higher urbanization and industrialization since the 1980s, while in the future, Shandong and Liaoning are expected to have higher concentrations of PFOS than those in Beijing. The water system including coastal water, fresh water and sediment was the biggest sink for PFOS for coastal regions. Among the chemical inputs, direct primary emissions played a more important role, whereas for chemical removal processes, inter-regional advection and background outflow were the predominant pathways. The results would be useful to control the PFOS releases in China and will help the management agencies to implement the “Stockholm Convention” effectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Dynamic multimedia fate simulation of Perfluorooctane Sulfonate (PFOS) from 1981 to 2050 in the urbanizing Bohai Rim of China

Loading next page...
 
/lp/elsevier/dynamic-multimedia-fate-simulation-of-perfluorooctane-sulfonate-pfos-rMnZttUKZ8
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.12.045
Publisher site
See Article on Publisher Site

Abstract

Perfluorooctane sulfonate (PFOS) and related substances are widely used in various industrial and commercial applications in China that ultimately discharge sufficient quantities of PFOS to the environment. It remains unclear how emissions of PFOS ultimately affect its concentrations as well as its fate in the environment. In this study, an improved Berkeley-Trent (BETR) multimedia model is developed to predict the PFOS levels with spatial and temporal distributions on unsteady state mode from 1981 to 2050, by taking the Bohai Rim of China as a case. The results showed that the modeled concentrations agreed well with the measured data. According to the model, PFOS concentrations in fresh water peaked in some months after the peak emission (2008 or 2009), whereas in urban soil the concentrations increased to peak slightly later (around 2014). Among the selected regions, Beijing and Tianjin were simulated with higher PFOS levels in the past and present because of their higher urbanization and industrialization since the 1980s, while in the future, Shandong and Liaoning are expected to have higher concentrations of PFOS than those in Beijing. The water system including coastal water, fresh water and sediment was the biggest sink for PFOS for coastal regions. Among the chemical inputs, direct primary emissions played a more important role, whereas for chemical removal processes, inter-regional advection and background outflow were the predominant pathways. The results would be useful to control the PFOS releases in China and will help the management agencies to implement the “Stockholm Convention” effectively.

Journal

Environmental PollutionElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off