Dynamic modeling the composting process of the mixture of poultry manure and wheat straw

Dynamic modeling the composting process of the mixture of poultry manure and wheat straw Due to lack of understanding of the complex nature of the composting process, there is a need to provide a valuable tool that can help to improve the prediction of the process performance but also its optimization. Therefore, the main objective of this study is to develop a comprehensive mathematical model of the composting process based on microbial kinetics. The model incorporates two different microbial populations that metabolize the organic matter in two different substrates. The model was validated by comparison of the model and experimental data obtained from the composting process of the mixture of poultry manure and wheat straw. Comparison of simulation results and experimental data for five dynamic state variables (organic matter conversion, oxygen concentration, carbon dioxide concentration, substrate temperature and moisture content) showed that the model has very good predictions of the process performance. According to simulation results, the optimum values for air flow rate and ambient air temperature are 0.43 l min−1 kg−1OM and 28 °C, respectively. On the basis of sensitivity analysis, the maximum organic matter conversion is the most sensitive among the three objective functions. Among the twelve examined parameters, μmax,1 is the most influencing parameter and X1 is the least influencing parameter. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Environmental Management Elsevier

Dynamic modeling the composting process of the mixture of poultry manure and wheat straw

Loading next page...
 
/lp/elsevier/dynamic-modeling-the-composting-process-of-the-mixture-of-poultry-LJnhboz78i
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0301-4797
D.O.I.
10.1016/j.jenvman.2015.07.033
Publisher site
See Article on Publisher Site

Abstract

Due to lack of understanding of the complex nature of the composting process, there is a need to provide a valuable tool that can help to improve the prediction of the process performance but also its optimization. Therefore, the main objective of this study is to develop a comprehensive mathematical model of the composting process based on microbial kinetics. The model incorporates two different microbial populations that metabolize the organic matter in two different substrates. The model was validated by comparison of the model and experimental data obtained from the composting process of the mixture of poultry manure and wheat straw. Comparison of simulation results and experimental data for five dynamic state variables (organic matter conversion, oxygen concentration, carbon dioxide concentration, substrate temperature and moisture content) showed that the model has very good predictions of the process performance. According to simulation results, the optimum values for air flow rate and ambient air temperature are 0.43 l min−1 kg−1OM and 28 °C, respectively. On the basis of sensitivity analysis, the maximum organic matter conversion is the most sensitive among the three objective functions. Among the twelve examined parameters, μmax,1 is the most influencing parameter and X1 is the least influencing parameter.

Journal

Journal of Environmental ManagementElsevier

Published: Sep 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off