Dynamic modeling approaches to characterize the functioning of health systems: A systematic review of the literature

Dynamic modeling approaches to characterize the functioning of health systems: A systematic... Universal Health Coverage (UHC) is one of the targets for the United Nations Sustainable Development Goal 3. The impetus for UHC has led to an increased demand for time-sensitive tools to enhance our knowledge of how health systems function and to evaluate impact of system interventions. We define the field of “health system modeling” (HSM) as an area of research where dynamic mathematical models can be designed in order to describe, predict, and quantitatively capture the functioning of health systems. HSM can be used to explore the dynamic relationships among different system components, including organizational design, financing and other resources (such as investments in resources and supply chain management systems) – what we call “inputs” – on access, coverage, and quality of care – what we call “outputs”, toward improved health system “outcomes”, namely increased levels and fairer distributions of population health and financial risk protection.We undertook a systematic review to identify the existing approaches used in HSM. We identified “systems thinking” – a conceptual and qualitative description of the critical interactions within a health system – as an important underlying precursor to HSM, and collated a critical collection of such articles. We then reviewed and categorized articles from two schools of thoughts: “system dynamics” (SD)” and “susceptible-infected-recovered-plus” (SIR+). SD emphasizes the notion of accumulations of stocks in the system, inflows and outflows, and causal feedback structure to predict intended and unintended consequences of policy interventions. The SIR + models link a typical disease transmission model with another that captures certain aspects of the system that impact the outcomes of the main model. These existing methods provide critical insights in informing the design of HSM, and provide a departure point to extend this research agenda. We highlight the opportunity to advance modeling methods to further understand the dynamics between health system inputs and outputs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Social Science & Medicine Elsevier

Dynamic modeling approaches to characterize the functioning of health systems: A systematic review of the literature

Loading next page...
 
/lp/elsevier/dynamic-modeling-approaches-to-characterize-the-functioning-of-health-G04JUlTZnR
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0277-9536
D.O.I.
10.1016/j.socscimed.2017.09.005
Publisher site
See Article on Publisher Site

Abstract

Universal Health Coverage (UHC) is one of the targets for the United Nations Sustainable Development Goal 3. The impetus for UHC has led to an increased demand for time-sensitive tools to enhance our knowledge of how health systems function and to evaluate impact of system interventions. We define the field of “health system modeling” (HSM) as an area of research where dynamic mathematical models can be designed in order to describe, predict, and quantitatively capture the functioning of health systems. HSM can be used to explore the dynamic relationships among different system components, including organizational design, financing and other resources (such as investments in resources and supply chain management systems) – what we call “inputs” – on access, coverage, and quality of care – what we call “outputs”, toward improved health system “outcomes”, namely increased levels and fairer distributions of population health and financial risk protection.We undertook a systematic review to identify the existing approaches used in HSM. We identified “systems thinking” – a conceptual and qualitative description of the critical interactions within a health system – as an important underlying precursor to HSM, and collated a critical collection of such articles. We then reviewed and categorized articles from two schools of thoughts: “system dynamics” (SD)” and “susceptible-infected-recovered-plus” (SIR+). SD emphasizes the notion of accumulations of stocks in the system, inflows and outflows, and causal feedback structure to predict intended and unintended consequences of policy interventions. The SIR + models link a typical disease transmission model with another that captures certain aspects of the system that impact the outcomes of the main model. These existing methods provide critical insights in informing the design of HSM, and provide a departure point to extend this research agenda. We highlight the opportunity to advance modeling methods to further understand the dynamics between health system inputs and outputs.

Journal

Social Science & MedicineElsevier

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off