Dynamic controllers for column synchronization of rotation matrices: A QR-factorization approach

Dynamic controllers for column synchronization of rotation matrices: A QR-factorization approach In the multi-agent systems setting, this paper addresses continuous-time distributed synchronization of columns of rotation matrices. More precisely, k specific columns shall be synchronized and only the corresponding k columns of the relative rotations between the agents are assumed to be available for the control design. When one specific column is considered, the problem is equivalent to synchronization on the ( d − 1 ) -dimensional unit sphere and when all the columns are considered, the problem is equivalent to synchronization on SO ( d ) . We design dynamic control laws for these synchronization problems. The control laws are based on the introduction of auxiliary variables in combination with a QR-factorization approach. The benefit of this QR-factorization approach is that we can decouple the dynamics for the k columns from the remaining d − k ones. Under the control scheme, the closed loop system achieves almost global convergence to synchronization for quasi-strong interaction graph topologies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Automatica Elsevier

Dynamic controllers for column synchronization of rotation matrices: A QR-factorization approach

Loading next page...
 
/lp/elsevier/dynamic-controllers-for-column-synchronization-of-rotation-matrices-a-X2zXa4LF2F
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0005-1098
D.O.I.
10.1016/j.automatica.2018.03.023
Publisher site
See Article on Publisher Site

Abstract

In the multi-agent systems setting, this paper addresses continuous-time distributed synchronization of columns of rotation matrices. More precisely, k specific columns shall be synchronized and only the corresponding k columns of the relative rotations between the agents are assumed to be available for the control design. When one specific column is considered, the problem is equivalent to synchronization on the ( d − 1 ) -dimensional unit sphere and when all the columns are considered, the problem is equivalent to synchronization on SO ( d ) . We design dynamic control laws for these synchronization problems. The control laws are based on the introduction of auxiliary variables in combination with a QR-factorization approach. The benefit of this QR-factorization approach is that we can decouple the dynamics for the k columns from the remaining d − k ones. Under the control scheme, the closed loop system achieves almost global convergence to synchronization for quasi-strong interaction graph topologies.

Journal

AutomaticaElsevier

Published: Jul 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off