Durability of titanium adhesive bonds with surface pretreatments based on alkaline anodisation

Durability of titanium adhesive bonds with surface pretreatments based on alkaline anodisation The most recent works suggest that the alkaline anodizing process (NaTESi) based in a bath of sodium hydroxide may be an attractive alternative to chromic acid anodizing (CAA) for surface pretreatment of titanium alloys for preparing hybrid adhesive bonds Ti6Al4V/Carbon Fiber Reinforced Composite (CFRC). This work compares several anodizing processes used for surface preparation, such as CAA, NaTESi and two modified NaTESi processes. The surface morphology, roughness, surface free energy and, especially, the initial strength adherence and durability under the wedge crack tests have been characterized. Wedge crack tests were performed in three different ageing media that may be representative of the environment that adhesive joints based upon Ti6Al4V/CFRC have to withstand during aircraft service life environments: hot/wet conditions; CTB3+TS test, that combines wet-dry cycles with exposure to a corrosive environment (CTB3) and thermal shocking (TS); and immersion tests in a Lap Joint Simulant Solution (LJSS). The results indicate that despite the morphological differences of the oxide grown by CAA and NaTESi, the initial adhesive strength with an epoxy adhesive and the durability of the bond are similar for both anodizing processes. Conversely, higher initial adhesive forces are exhibited for both modified NaTESi anodizing processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Adhesion and Adhesives Elsevier

Durability of titanium adhesive bonds with surface pretreatments based on alkaline anodisation

Loading next page...
 
/lp/elsevier/durability-of-titanium-adhesive-bonds-with-surface-pretreatments-based-0OmITNr2Gw
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0143-7496
D.O.I.
10.1016/j.ijadhadh.2016.07.001
Publisher site
See Article on Publisher Site

Abstract

The most recent works suggest that the alkaline anodizing process (NaTESi) based in a bath of sodium hydroxide may be an attractive alternative to chromic acid anodizing (CAA) for surface pretreatment of titanium alloys for preparing hybrid adhesive bonds Ti6Al4V/Carbon Fiber Reinforced Composite (CFRC). This work compares several anodizing processes used for surface preparation, such as CAA, NaTESi and two modified NaTESi processes. The surface morphology, roughness, surface free energy and, especially, the initial strength adherence and durability under the wedge crack tests have been characterized. Wedge crack tests were performed in three different ageing media that may be representative of the environment that adhesive joints based upon Ti6Al4V/CFRC have to withstand during aircraft service life environments: hot/wet conditions; CTB3+TS test, that combines wet-dry cycles with exposure to a corrosive environment (CTB3) and thermal shocking (TS); and immersion tests in a Lap Joint Simulant Solution (LJSS). The results indicate that despite the morphological differences of the oxide grown by CAA and NaTESi, the initial adhesive strength with an epoxy adhesive and the durability of the bond are similar for both anodizing processes. Conversely, higher initial adhesive forces are exhibited for both modified NaTESi anodizing processes.

Journal

International Journal of Adhesion and AdhesivesElsevier

Published: Oct 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off