Durability of graphite coated carbon composite bipolar plates for vanadium redox flow batteries

Durability of graphite coated carbon composite bipolar plates for vanadium redox flow batteries Composite bipolar plates for vanadium redox flow batteries (VRFBs) and fuel cells are coated with expanded graphite to decrease the interfacial contact resistance of the carbon composite. The bipolar plates of vanadium redox flow batteries are exposed to electro-chemical corrosion, which might degrade the graphite coating layer. From two types of graphite foil, i.e., pyrolytic graphite and expanded flake-type graphite, the former has higher durability because its graphene sheets are crystallized in a planar direction with a highly oriented structure, which has a stronger van der Waals bonding.In this study, the characteristics of the pyrolytic graphite and expanded flake-type graphite are investigated with respect to the porosity of graphite. The durability of the graphite coating of the carbon/epoxy composite bipolar plate during the electrochemical reaction in vanadium electrolytes, based on highly concentrated sulfuric acid, is investigated. The areal specific resistances (ASRs) of the bipolar plates coated with pyrolytic graphite are measured, from which the ASR is expressed in terms of modulus of the graphite based on the Hertzian contact model. A single cell test is performed to evaluate the performance of the developed bipolar plate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Durability of graphite coated carbon composite bipolar plates for vanadium redox flow batteries

Loading next page...
 
/lp/elsevier/durability-of-graphite-coated-carbon-composite-bipolar-plates-for-1Pbg2JI8e0
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2015.08.030
Publisher site
See Article on Publisher Site

Abstract

Composite bipolar plates for vanadium redox flow batteries (VRFBs) and fuel cells are coated with expanded graphite to decrease the interfacial contact resistance of the carbon composite. The bipolar plates of vanadium redox flow batteries are exposed to electro-chemical corrosion, which might degrade the graphite coating layer. From two types of graphite foil, i.e., pyrolytic graphite and expanded flake-type graphite, the former has higher durability because its graphene sheets are crystallized in a planar direction with a highly oriented structure, which has a stronger van der Waals bonding.In this study, the characteristics of the pyrolytic graphite and expanded flake-type graphite are investigated with respect to the porosity of graphite. The durability of the graphite coating of the carbon/epoxy composite bipolar plate during the electrochemical reaction in vanadium electrolytes, based on highly concentrated sulfuric acid, is investigated. The areal specific resistances (ASRs) of the bipolar plates coated with pyrolytic graphite are measured, from which the ASR is expressed in terms of modulus of the graphite based on the Hertzian contact model. A single cell test is performed to evaluate the performance of the developed bipolar plate.

Journal

Composite StructuresElsevier

Published: Dec 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off