Duplex stainless steel fabricated by selective laser melting - Microstructural and mechanical properties

Duplex stainless steel fabricated by selective laser melting - Microstructural and mechanical... In the scope of the present study, microstructural and mechanical characterizations of duplex stainless steel UNS S31803 processed by selective laser melting (SLM) are conducted. The findings shed light on the phase arrangement evolving in the as-built condition and in several heat-treated conditions. In the as-built condition, austenite formation is almost suppressed due to process-related high cooling rates. Therefore, several heat treatments ranging from 900°C to 1200°C for 5min each were performed in order to adjust to the desired austenitic-ferritic microstructure. Results generated by transmission electron microscopy (TEM) reveal a high dislocation density induced during SLM fabrication, such that a recrystallized microstructure prevails after the heat treatment. Tensile tests display the severe impact of the heat treatment on the resulting mechanical response. The nearly complete ferritic as-built specimens obtain a higher ultimate tensile strength and a reduced elongation at fracture compared to the heat-treated specimens. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials & design Elsevier

Duplex stainless steel fabricated by selective laser melting - Microstructural and mechanical properties

Loading next page...
 
/lp/elsevier/duplex-stainless-steel-fabricated-by-selective-laser-melting-P50C0AtmyY
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0264-1275
eISSN
0141-5530
D.O.I.
10.1016/j.matdes.2017.07.046
Publisher site
See Article on Publisher Site

Abstract

In the scope of the present study, microstructural and mechanical characterizations of duplex stainless steel UNS S31803 processed by selective laser melting (SLM) are conducted. The findings shed light on the phase arrangement evolving in the as-built condition and in several heat-treated conditions. In the as-built condition, austenite formation is almost suppressed due to process-related high cooling rates. Therefore, several heat treatments ranging from 900°C to 1200°C for 5min each were performed in order to adjust to the desired austenitic-ferritic microstructure. Results generated by transmission electron microscopy (TEM) reveal a high dislocation density induced during SLM fabrication, such that a recrystallized microstructure prevails after the heat treatment. Tensile tests display the severe impact of the heat treatment on the resulting mechanical response. The nearly complete ferritic as-built specimens obtain a higher ultimate tensile strength and a reduced elongation at fracture compared to the heat-treated specimens.

Journal

Materials & designElsevier

Published: Nov 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off