Dual-specificity phosphatase 18 modulates the SUMOylation and aggregation of Ataxin-1

Dual-specificity phosphatase 18 modulates the SUMOylation and aggregation of Ataxin-1 We previously reported that SUMOylation promotes the aggregation of ataxin-1 and JNK is involved in the process. Here we show that dual-specificity phosphatase 18 (DUSP18), a member of protein tyrosine phosphatases, exerts the opposite effects on ataxin-1. DUSP18 associated with ataxin-1 and suppressed JNK activated by ataxin-1. Interestingly DUSP18, but not the other DUSPs interacting with ataxin-1, caused the mobility shift of ataxin-1. De-phosphorylation by DUSP18 was initially suspected as a cause for such an effect; however, the phosphorylation of ataxin-1 was unchanged. Instead DUSP18 inhibited SUMOylation and reduced ataxin-1 aggregation. The catalytic mutant of DUSP18 failed to reduce the SUMOylation and aggregation of ataxin-1 indicating that the phosphatase activity is indispensable for the effects. Moreover, DUSP18 disrupted the co-localization of ataxin-1 with the PML component Sp100. These results together implicate that JNK and DUSP18 reciprocally modulate the SUMOylation, which plays a regulatory role in the aggregation of ataxin-1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical and Biophysical Research Communications Elsevier

Dual-specificity phosphatase 18 modulates the SUMOylation and aggregation of Ataxin-1

Loading next page...
 
/lp/elsevier/dual-specificity-phosphatase-18-modulates-the-sumoylation-and-DOEf0KSQ2I
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0006-291x
D.O.I.
10.1016/j.bbrc.2018.05.178
Publisher site
See Article on Publisher Site

Abstract

We previously reported that SUMOylation promotes the aggregation of ataxin-1 and JNK is involved in the process. Here we show that dual-specificity phosphatase 18 (DUSP18), a member of protein tyrosine phosphatases, exerts the opposite effects on ataxin-1. DUSP18 associated with ataxin-1 and suppressed JNK activated by ataxin-1. Interestingly DUSP18, but not the other DUSPs interacting with ataxin-1, caused the mobility shift of ataxin-1. De-phosphorylation by DUSP18 was initially suspected as a cause for such an effect; however, the phosphorylation of ataxin-1 was unchanged. Instead DUSP18 inhibited SUMOylation and reduced ataxin-1 aggregation. The catalytic mutant of DUSP18 failed to reduce the SUMOylation and aggregation of ataxin-1 indicating that the phosphatase activity is indispensable for the effects. Moreover, DUSP18 disrupted the co-localization of ataxin-1 with the PML component Sp100. These results together implicate that JNK and DUSP18 reciprocally modulate the SUMOylation, which plays a regulatory role in the aggregation of ataxin-1.

Journal

Biochemical and Biophysical Research CommunicationsElsevier

Published: Jul 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off