Dual effects of insect nAChR chaperone RIC-3 on hybrid receptor: Promoting assembly on endoplasmic reticulum but suppressing transport to plasma membrane on Xenopus oocytes

Dual effects of insect nAChR chaperone RIC-3 on hybrid receptor: Promoting assembly on... Resistance to inhibitors of cholinesterase (RIC) −3 promotes the maturation (folding and assembly) of neuronal nicotinic acetylcholine receptors (nAChRs) as a molecular chaperone. The modulation effects of RIC-3 on homomeric α7 nAChRs are always positive, but its effects on heteromeric subtypes are inconsistent among reports. In this study, five RIC-3 isoforms were identified from Locusta migratoria. Four isoforms showed obvious effects on hybrid receptor Locα1/rβ2 expressed in Xenopus oocytes. As a representative, the co-expression of RIC-3v4 exhibited the decreased agonist responses (Imax) on oocytes, lower specific [3H]epibatidine binding (Bmax) on plasma membrane protein (PMP), and reduced subunit levels in PMP, which showed that the mature Locα1/rβ2 on the plasma membrane was decreased by the co-expression of RIC-3. In contrast, the [3H]epibatidine binding and mature Locα1/rβ2 levels in the endoplasmic reticulum membrane protein (ERMP) were much increased when co-expressing with RIC-3v4. The [3H]epibatidine binding and mature Locα1/rβ2 levels in total membrane protein (TMP) gave the similar results as that in ERMP. Taking data together, the results showed that the co-expression of RIC-3 increased the mature Locα1/rβ2 receptor levels on ER of Xenopus oocytes, but these mature receptors were mostly kept on ER and suppressed to transport to plasma membrane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neurochemistry International Elsevier

Dual effects of insect nAChR chaperone RIC-3 on hybrid receptor: Promoting assembly on endoplasmic reticulum but suppressing transport to plasma membrane on Xenopus oocytes

Loading next page...
 
/lp/elsevier/dual-effects-of-insect-nachr-chaperone-ric-3-on-hybrid-receptor-3Eqp3Kv8Jx
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0197-0186
D.O.I.
10.1016/j.neuint.2017.10.007
Publisher site
See Article on Publisher Site

Abstract

Resistance to inhibitors of cholinesterase (RIC) −3 promotes the maturation (folding and assembly) of neuronal nicotinic acetylcholine receptors (nAChRs) as a molecular chaperone. The modulation effects of RIC-3 on homomeric α7 nAChRs are always positive, but its effects on heteromeric subtypes are inconsistent among reports. In this study, five RIC-3 isoforms were identified from Locusta migratoria. Four isoforms showed obvious effects on hybrid receptor Locα1/rβ2 expressed in Xenopus oocytes. As a representative, the co-expression of RIC-3v4 exhibited the decreased agonist responses (Imax) on oocytes, lower specific [3H]epibatidine binding (Bmax) on plasma membrane protein (PMP), and reduced subunit levels in PMP, which showed that the mature Locα1/rβ2 on the plasma membrane was decreased by the co-expression of RIC-3. In contrast, the [3H]epibatidine binding and mature Locα1/rβ2 levels in the endoplasmic reticulum membrane protein (ERMP) were much increased when co-expressing with RIC-3v4. The [3H]epibatidine binding and mature Locα1/rβ2 levels in total membrane protein (TMP) gave the similar results as that in ERMP. Taking data together, the results showed that the co-expression of RIC-3 increased the mature Locα1/rβ2 receptor levels on ER of Xenopus oocytes, but these mature receptors were mostly kept on ER and suppressed to transport to plasma membrane.

Journal

Neurochemistry InternationalElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off