Doxorubicin and rhein loaded nanomicelles attenuates multidrug resistance in human ovarian cancer

Doxorubicin and rhein loaded nanomicelles attenuates multidrug resistance in human ovarian cancer Tumor targeting delivery system has been suggested as an attractive strategy against tumor progression. Combination chemotherapy is essential and effective in preventing ovarian cancer. Rhein (4, 5-dihydroxyanthraquinone-2-carboxylic acid) is a lipophilic anthraquinone. Emerging evidence indicates that rhein has many pharmacological effects, such as nephroprotective, hepatoprotective, anti-inflammatory, antioxidant, and anticancer activities. In our study, doxorubicin (DOX) and rhein (RHE) co-loaded polymeric micelle (nano-DOX/RHE) were prepared to attenuate drug resistance in ovarian cancer cells while promoting the therapeutic efficiency of DOX. The morphology, particle size (about 25 nm), zeta potential, release profile in vitro, cell proliferation and cytotoxicity effects were calculated. The results suggested that DOX and RHE could be efficiently loaded into micelle nanoparticles, and in vitro study indicated that they could be released from the nanoparticles in an extended period into DOX-resistant SKOV3 cells (SKOV3/DOX). Nano-DOX/RHE exerted an enhanced cytotoxicity and high apoptosis-inducing activities in SKOV3/DOX cells. Importantly, nano-DOX/RHE exhibited better cancer targeting ability, enhancing the anti-tumor efficacy with little toxicity. In conclusion, nano-DOX/RHE promoted the drug target on tumor site with preferable anti-tumor effects, which could be a promising therapeutic strategy against human ovarian cancer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical and Biophysical Research Communications Elsevier

Doxorubicin and rhein loaded nanomicelles attenuates multidrug resistance in human ovarian cancer

Loading next page...
 
/lp/elsevier/doxorubicin-and-rhein-loaded-nanomicelles-attenuates-multidrug-jfxVH6pvfv
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0006-291x
D.O.I.
10.1016/j.bbrc.2018.01.042
Publisher site
See Article on Publisher Site

Abstract

Tumor targeting delivery system has been suggested as an attractive strategy against tumor progression. Combination chemotherapy is essential and effective in preventing ovarian cancer. Rhein (4, 5-dihydroxyanthraquinone-2-carboxylic acid) is a lipophilic anthraquinone. Emerging evidence indicates that rhein has many pharmacological effects, such as nephroprotective, hepatoprotective, anti-inflammatory, antioxidant, and anticancer activities. In our study, doxorubicin (DOX) and rhein (RHE) co-loaded polymeric micelle (nano-DOX/RHE) were prepared to attenuate drug resistance in ovarian cancer cells while promoting the therapeutic efficiency of DOX. The morphology, particle size (about 25 nm), zeta potential, release profile in vitro, cell proliferation and cytotoxicity effects were calculated. The results suggested that DOX and RHE could be efficiently loaded into micelle nanoparticles, and in vitro study indicated that they could be released from the nanoparticles in an extended period into DOX-resistant SKOV3 cells (SKOV3/DOX). Nano-DOX/RHE exerted an enhanced cytotoxicity and high apoptosis-inducing activities in SKOV3/DOX cells. Importantly, nano-DOX/RHE exhibited better cancer targeting ability, enhancing the anti-tumor efficacy with little toxicity. In conclusion, nano-DOX/RHE promoted the drug target on tumor site with preferable anti-tumor effects, which could be a promising therapeutic strategy against human ovarian cancer.

Journal

Biochemical and Biophysical Research CommunicationsElsevier

Published: Mar 25, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial