Down-regulation of HECTD3 by HER2 inhibition makes serous ovarian cancer cells sensitive to platinum treatment

Down-regulation of HECTD3 by HER2 inhibition makes serous ovarian cancer cells sensitive to... Resistance to platinum-based chemotherapy is a major cause of treatment failure in patients with epithelial ovarian cancer and predicts a poor prognosis. Previously, we found that HECTD3 confers cancer cell resistance to apoptosis. However, the significance of HECTD3 expression in ovarian cancer and its regulatory mechanisms were unknown. Here, we found that HECTD3 depletion promotes carboplatin-induced apoptosis in both an ovarian cancer cell model and a xenograft mouse model. Moreover, high HECTD3 expression is significantly associated with poor platinum response and prognosis in ovarian cancer patients. We further demonstrated that HER2 can up-regulate HECTD3 expression through activating STAT3. Furthermore, HER2 inhibitors, such as lapatinib, down-regulate HECTD3 expression and thus promote the chemosensitivity of ovarian cancer cells to carboplatin. Lapatinib combined with carboplatin also significantly inhibits serous ovarian carcinoma growth compared with each drug alone in a xenograft mouse model. HECTD3 may be considered a promising molecular predictor of platinum chemosensitivity and prognosis for serous ovarian cancer. Through decreasing HECTD3, lapatinib possesses significantly increased anti-tumor activity when combined with carboplatin compared with each agent alone, which provides an optional therapeutic regimen for serous ovarian cancer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cancer Letters Elsevier

Down-regulation of HECTD3 by HER2 inhibition makes serous ovarian cancer cells sensitive to platinum treatment

Loading next page...
 
/lp/elsevier/down-regulation-of-hectd3-by-her2-inhibition-makes-serous-ovarian-cITGDt0gFR
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0304-3835
D.O.I.
10.1016/j.canlet.2017.09.048
Publisher site
See Article on Publisher Site

Abstract

Resistance to platinum-based chemotherapy is a major cause of treatment failure in patients with epithelial ovarian cancer and predicts a poor prognosis. Previously, we found that HECTD3 confers cancer cell resistance to apoptosis. However, the significance of HECTD3 expression in ovarian cancer and its regulatory mechanisms were unknown. Here, we found that HECTD3 depletion promotes carboplatin-induced apoptosis in both an ovarian cancer cell model and a xenograft mouse model. Moreover, high HECTD3 expression is significantly associated with poor platinum response and prognosis in ovarian cancer patients. We further demonstrated that HER2 can up-regulate HECTD3 expression through activating STAT3. Furthermore, HER2 inhibitors, such as lapatinib, down-regulate HECTD3 expression and thus promote the chemosensitivity of ovarian cancer cells to carboplatin. Lapatinib combined with carboplatin also significantly inhibits serous ovarian carcinoma growth compared with each drug alone in a xenograft mouse model. HECTD3 may be considered a promising molecular predictor of platinum chemosensitivity and prognosis for serous ovarian cancer. Through decreasing HECTD3, lapatinib possesses significantly increased anti-tumor activity when combined with carboplatin compared with each agent alone, which provides an optional therapeutic regimen for serous ovarian cancer.

Journal

Cancer LettersElsevier

Published: Dec 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off