Double-stranded and single-stranded well-entangled DNA solutions under LAOS: A comprehensive study

Double-stranded and single-stranded well-entangled DNA solutions under LAOS: A comprehensive study The nonlinear rheological behaviors of concentrated double-stranded (ds) and single-stranded (ss) DNA solutions were studied under standard oscillatory and large amplitude oscillatory shear (LAOS) deformations. To decompose the total stress into the elastic and viscous components, the raw nonlinear waveforms were analyzed using the MITlaos software package. We found that smooth and rigorous intracycle strain stiffening and shear thinning dominate the elastic and viscous decomposition, respectively, of the ds DNA sample. In contrast, the ss DNA sample exhibits initial intracycle strain stiffening, followed by a transition region and a terminal flow behavior. Insights into the nonlinear response of the DNA solutions were achieved by performing particle image velocimetry (PIV) at a wide range of imposed strain amplitudes and two angular frequencies. The rheo-PIV results of the ds DNA sample show a substantially modified flow field with distinct strain-driven shear bands at both angular frequencies examined. The bands formed by the ss DNA sample were weak even at the maximum strain amplitude. The results from this work are insightful from a traditional bulk rheological perspective, as well as for further single-molecular studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Elsevier

Double-stranded and single-stranded well-entangled DNA solutions under LAOS: A comprehensive study

Loading next page...
 
/lp/elsevier/double-stranded-and-single-stranded-well-entangled-dna-solutions-under-o69FDWfB2D
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0032-3861
D.O.I.
10.1016/j.polymer.2018.02.061
Publisher site
See Article on Publisher Site

Abstract

The nonlinear rheological behaviors of concentrated double-stranded (ds) and single-stranded (ss) DNA solutions were studied under standard oscillatory and large amplitude oscillatory shear (LAOS) deformations. To decompose the total stress into the elastic and viscous components, the raw nonlinear waveforms were analyzed using the MITlaos software package. We found that smooth and rigorous intracycle strain stiffening and shear thinning dominate the elastic and viscous decomposition, respectively, of the ds DNA sample. In contrast, the ss DNA sample exhibits initial intracycle strain stiffening, followed by a transition region and a terminal flow behavior. Insights into the nonlinear response of the DNA solutions were achieved by performing particle image velocimetry (PIV) at a wide range of imposed strain amplitudes and two angular frequencies. The rheo-PIV results of the ds DNA sample show a substantially modified flow field with distinct strain-driven shear bands at both angular frequencies examined. The bands formed by the ss DNA sample were weak even at the maximum strain amplitude. The results from this work are insightful from a traditional bulk rheological perspective, as well as for further single-molecular studies.

Journal

PolymerElsevier

Published: Mar 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off