Does oyster size matter for modelling trace metal bioaccumulation?

Does oyster size matter for modelling trace metal bioaccumulation? The aim of this study was assessing whether trace metal bioaccumulation models for oysters need to account for the effect of size-structured demography. To achieve this, we used a Bayesian generalised additive mixed modelling (BGAMM) approach. This nonparametric regression approach allowed us to estimate potentially nonlinear size effects of the oysters as well as random and structured spatial effects. Native oysters were collected from ten locations around the shoreline of Moreton Bay, a subtropical estuary in southeast Queensland, Australia. The soft-tissue of these sampled oysters were weighed (dry weight basis) and then analysed for Al, Cu, Fe, Mg, Mn and Zn. Of the six trace metals analysed, only Mg was found to have a significant (negative) effect of soft-tissue mass. The correlated spatial effects for Cu, Mn and Zn indicated that the source of these trace metals in the oysters was from anthropogenic inputs while the correlated spatial effects for Al and Mg indicated natural inputs. The correlated spatial effect for Fe was characterised by ‘hotspot’ concentrations in regions of Moreton Bay where algal blooms have previously occurred and consequently oysters might be useful as an indicator of algal blooms in the Bay. Overall, the absence of an observed size effect for five of the six trace metals indicates that bioaccumulation models do not necessarily need to account for size-structured demography therefore enabling simpler models to be used. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Does oyster size matter for modelling trace metal bioaccumulation?

Loading next page...
 
/lp/elsevier/does-oyster-size-matter-for-modelling-trace-metal-bioaccumulation-NHgiDnoSdP
Publisher
Elsevier
Copyright
Copyright © 2007 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2007.08.060
Publisher site
See Article on Publisher Site

Abstract

The aim of this study was assessing whether trace metal bioaccumulation models for oysters need to account for the effect of size-structured demography. To achieve this, we used a Bayesian generalised additive mixed modelling (BGAMM) approach. This nonparametric regression approach allowed us to estimate potentially nonlinear size effects of the oysters as well as random and structured spatial effects. Native oysters were collected from ten locations around the shoreline of Moreton Bay, a subtropical estuary in southeast Queensland, Australia. The soft-tissue of these sampled oysters were weighed (dry weight basis) and then analysed for Al, Cu, Fe, Mg, Mn and Zn. Of the six trace metals analysed, only Mg was found to have a significant (negative) effect of soft-tissue mass. The correlated spatial effects for Cu, Mn and Zn indicated that the source of these trace metals in the oysters was from anthropogenic inputs while the correlated spatial effects for Al and Mg indicated natural inputs. The correlated spatial effect for Fe was characterised by ‘hotspot’ concentrations in regions of Moreton Bay where algal blooms have previously occurred and consequently oysters might be useful as an indicator of algal blooms in the Bay. Overall, the absence of an observed size effect for five of the six trace metals indicates that bioaccumulation models do not necessarily need to account for size-structured demography therefore enabling simpler models to be used.

Journal

Science of the Total EnvironmentElsevier

Published: Jan 25, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off