Does chronic nociceptive stimulation alter the development of morphine tolerance?

Does chronic nociceptive stimulation alter the development of morphine tolerance? Conflicting results exist concerning the issues of whether chronic nociceptive stimulation (a) increases or decreases the effectiveness of morphine analgesia, and (b) facilitates or inhibits the development of narcotic tolerance. We carried out a series of experiments with appropriate controls in order to examine these two issues and their possible relationship. In experiment 1, rats received complete Freund's adjuvant (CFA), a chronic nociceptor, injected into a single hind paw or anesthesia without injection, together with morphine or placebo pellets in a 2 × 2 study design. The data indicate that the presence of the chronic nociceptive stimulus significantly facilitated the development of tolerance to morphine analgesia as measured using tail-flick latency (TFL) testing. Experiment 2 was designed to compare the analgetic effectiveness of an acute injection of morphine in rats experiencing chronic nociceptive stimulation and in controls. CFA was injected in the right hindpaw, and nine days later TFLs were tested after morphine doses of 1 and 2 mg/kg s.c. The data obtained showed that chronic nociceptive stimulation significantly reduced the effectiveness of morphine at the 1 mg/kg dose. However, baseline TFLs appeared to be shorter in rats treated with CFA, suggesting that the decrease in morphine effectiveness could be due to a general increase in pain sensitivity. Therefore, a third experiment was performed, using a less intense thermal stimulus to prolong baseline TFLs and accentuate any potential differences. Sixteen rats either received CFA or served as controls. TFLs were then measured at baseline and one hour after a 0.5 mg/kg dose of morphine. TFLs were significantly shorter in CFA injected animals at both times, suggesting that hyperalgesia had developed and that the observed decrease in morphine effectiveness could be due to an increase in pain sensitivity. We suggest that the primary effect is a facilitation of pain responsiveness in animals exposed to chronic nociceptors, and that experimental variables can lead to an apparent increase or decrease in the rate of development of tolerance to morphine. These results and their relation to previous findings are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Research Elsevier

Does chronic nociceptive stimulation alter the development of morphine tolerance?

Loading next page...
 
/lp/elsevier/does-chronic-nociceptive-stimulation-alter-the-development-of-morphine-jduiuiG7pC
Publisher
Elsevier
Copyright
Copyright © 1995 Elsevier Science B.V. All rights reserved
ISSN
0006-8993
DOI
10.1016/0006-8993(95)00259-S
Publisher site
See Article on Publisher Site

Abstract

Conflicting results exist concerning the issues of whether chronic nociceptive stimulation (a) increases or decreases the effectiveness of morphine analgesia, and (b) facilitates or inhibits the development of narcotic tolerance. We carried out a series of experiments with appropriate controls in order to examine these two issues and their possible relationship. In experiment 1, rats received complete Freund's adjuvant (CFA), a chronic nociceptor, injected into a single hind paw or anesthesia without injection, together with morphine or placebo pellets in a 2 × 2 study design. The data indicate that the presence of the chronic nociceptive stimulus significantly facilitated the development of tolerance to morphine analgesia as measured using tail-flick latency (TFL) testing. Experiment 2 was designed to compare the analgetic effectiveness of an acute injection of morphine in rats experiencing chronic nociceptive stimulation and in controls. CFA was injected in the right hindpaw, and nine days later TFLs were tested after morphine doses of 1 and 2 mg/kg s.c. The data obtained showed that chronic nociceptive stimulation significantly reduced the effectiveness of morphine at the 1 mg/kg dose. However, baseline TFLs appeared to be shorter in rats treated with CFA, suggesting that the decrease in morphine effectiveness could be due to a general increase in pain sensitivity. Therefore, a third experiment was performed, using a less intense thermal stimulus to prolong baseline TFLs and accentuate any potential differences. Sixteen rats either received CFA or served as controls. TFLs were then measured at baseline and one hour after a 0.5 mg/kg dose of morphine. TFLs were significantly shorter in CFA injected animals at both times, suggesting that hyperalgesia had developed and that the observed decrease in morphine effectiveness could be due to an increase in pain sensitivity. We suggest that the primary effect is a facilitation of pain responsiveness in animals exposed to chronic nociceptors, and that experimental variables can lead to an apparent increase or decrease in the rate of development of tolerance to morphine. These results and their relation to previous findings are discussed.

Journal

Brain ResearchElsevier

Published: May 22, 1995

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off