DNA methylation and chromatin modification

DNA methylation and chromatin modification DNA methylation and chromatin modification are two global mechanisms that regulate gene expression. Recent studies provide insight into the mechanism of transcriptional silencing by a methyl-CpG binding protein, MeCP2. MeCP2 is shown to interact with the Sin3/histone deacetylase co-repressor complex. Thus, this interaction can provide a mechanistic explanation for the long-known relationship between DNA methylation and chromatin structure. Moreover, several studies have shown that inhibition of histone deacetylases by specific inhibitors can reactivate endogenous genes or reporter constructs previously silenced by DNA methylation. Taken together, the data strongly suggest that DNA methylation can pattern chromatin modification. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Opinion in Genetics & Development Elsevier

DNA methylation and chromatin modification

Loading next page...
 
/lp/elsevier/dna-methylation-and-chromatin-modification-0R0ktRkWzT
Publisher site
See Article on Publisher Site

Abstract

DNA methylation and chromatin modification are two global mechanisms that regulate gene expression. Recent studies provide insight into the mechanism of transcriptional silencing by a methyl-CpG binding protein, MeCP2. MeCP2 is shown to interact with the Sin3/histone deacetylase co-repressor complex. Thus, this interaction can provide a mechanistic explanation for the long-known relationship between DNA methylation and chromatin structure. Moreover, several studies have shown that inhibition of histone deacetylases by specific inhibitors can reactivate endogenous genes or reporter constructs previously silenced by DNA methylation. Taken together, the data strongly suggest that DNA methylation can pattern chromatin modification.

Journal

Current Opinion in Genetics & DevelopmentElsevier

Published: Apr 1, 1999

References

  • DNA methylation directs a time dependent repression of transcription initiation
    Kass, SU; Landsberget, N; Wolffe, AP
  • An embryonic demethylation mechanism involving binding of transcription factors to replicating DNA
    Matsuo, K; Silke, J; Georgiev, O; Marti, P; Giovannini, N; Rungger, D

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off