Distinct cannabinoid sensitive receptors regulate hippocampal excitation and inhibition

Distinct cannabinoid sensitive receptors regulate hippocampal excitation and inhibition One of the well-known effects of cannabinoids is the impairment of cognitive processes, including short-term memory formation, by altering hippocampal and neocortical functions reflected in network activity. Acting on presynaptically located G protein-coupled receptors in the hippocampus, cannabinoids modulate the release of neurotransmitter molecules. CB1 cannabinoid receptors, so far the only cloned cannabinoid receptor type in the CNS, are selectively expressed on the axon terminals of a subset of GABAergic inhibitory interneurons containing the neuropeptide cholecystokinin. Activation of CB1 receptors reduces GABA release from presynaptic terminals, thereby increasing the excitability of principal cells. Novel, non-CB1 cannabinoid sensitive receptors are present on the hippocampal excitatory axon terminals, which suppress glutamate release. These cannabinoid receptors have distinct pharmacological features compared to CB1, i.e. WIN 55,212-2 is an order of magnitude less potent in reducing glutamatergic transmission than in inhibiting GABAergic postsynaptic currents, and the novel receptor binds vanilloid receptor ligands. Thus, at least two different cannabinoid sensitive presynaptic receptors regulate network activity in the hippocampus, CB1 via the GABAergic interneurons, and a new receptor via a direct action on pyramidal cell axon terminals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemistry and Physics of Lipids Elsevier

Distinct cannabinoid sensitive receptors regulate hippocampal excitation and inhibition

Loading next page...
 
/lp/elsevier/distinct-cannabinoid-sensitive-receptors-regulate-hippocampal-IyU1OUxyEa
Publisher
Elsevier
Copyright
Copyright © 2002 Elsevier Science Ireland Ltd
ISSN
0009-3084
eISSN
1873-2941
DOI
10.1016/S0009-3084(02)00149-4
Publisher site
See Article on Publisher Site

Abstract

One of the well-known effects of cannabinoids is the impairment of cognitive processes, including short-term memory formation, by altering hippocampal and neocortical functions reflected in network activity. Acting on presynaptically located G protein-coupled receptors in the hippocampus, cannabinoids modulate the release of neurotransmitter molecules. CB1 cannabinoid receptors, so far the only cloned cannabinoid receptor type in the CNS, are selectively expressed on the axon terminals of a subset of GABAergic inhibitory interneurons containing the neuropeptide cholecystokinin. Activation of CB1 receptors reduces GABA release from presynaptic terminals, thereby increasing the excitability of principal cells. Novel, non-CB1 cannabinoid sensitive receptors are present on the hippocampal excitatory axon terminals, which suppress glutamate release. These cannabinoid receptors have distinct pharmacological features compared to CB1, i.e. WIN 55,212-2 is an order of magnitude less potent in reducing glutamatergic transmission than in inhibiting GABAergic postsynaptic currents, and the novel receptor binds vanilloid receptor ligands. Thus, at least two different cannabinoid sensitive presynaptic receptors regulate network activity in the hippocampus, CB1 via the GABAergic interneurons, and a new receptor via a direct action on pyramidal cell axon terminals.

Journal

Chemistry and Physics of LipidsElsevier

Published: Dec 31, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off