Disentanglement induced by uniaxial pre-stretching as a key factor for toughening poly(l-lactic acid) sheets

Disentanglement induced by uniaxial pre-stretching as a key factor for toughening poly(l-lactic... Poly(l-lactic acid) (PLLA) sheets with dramatic improvement of mechanical properties, especially toughness, were obtained by uniaxial pre-stretching around Tg. It was found that a network structure consisting of cohesional entanglements was formed during the usual compression molding process, leading to the brittleness of PLLA, and the destruction of the network structure due to disentanglement after pre-stretching, leading to the toughness of PLLA. The network structure could not be destroyed when pre-stretching ratio (PSR) was in the elastic deformation region I and strain softening region II (PSR < 0.2). However, when PSR got into the strain hardening region III (PSR = 0.2), the network structure was destroyed resulting from the disentanglement, leading to the brittle to ductile transition. With PSR increasing from 0.2 to 0.4, the orientation was formed in pre-stretched PLLA, leading to further increase of the elongation at break. And then the degree of orientation increased along with the occurrence of the mesophase (PSR ≥ 0.5), therefore, the modulus and strength increased, while the elongation at break decreased. However, the elongation at break was still larger than that of undrawn PLLA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Elsevier

Disentanglement induced by uniaxial pre-stretching as a key factor for toughening poly(l-lactic acid) sheets

Loading next page...
 
/lp/elsevier/disentanglement-induced-by-uniaxial-pre-stretching-as-a-key-factor-for-KbMXlJB7Gy
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0032-3861
D.O.I.
10.1016/j.polymer.2018.02.032
Publisher site
See Article on Publisher Site

Abstract

Poly(l-lactic acid) (PLLA) sheets with dramatic improvement of mechanical properties, especially toughness, were obtained by uniaxial pre-stretching around Tg. It was found that a network structure consisting of cohesional entanglements was formed during the usual compression molding process, leading to the brittleness of PLLA, and the destruction of the network structure due to disentanglement after pre-stretching, leading to the toughness of PLLA. The network structure could not be destroyed when pre-stretching ratio (PSR) was in the elastic deformation region I and strain softening region II (PSR < 0.2). However, when PSR got into the strain hardening region III (PSR = 0.2), the network structure was destroyed resulting from the disentanglement, leading to the brittle to ductile transition. With PSR increasing from 0.2 to 0.4, the orientation was formed in pre-stretched PLLA, leading to further increase of the elongation at break. And then the degree of orientation increased along with the occurrence of the mesophase (PSR ≥ 0.5), therefore, the modulus and strength increased, while the elongation at break decreased. However, the elongation at break was still larger than that of undrawn PLLA.

Journal

PolymerElsevier

Published: Mar 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial