Discussion on the applicability of the M-N interaction curve for the fire resistance design of CFT members

Discussion on the applicability of the M-N interaction curve for the fire resistance design of... When subjected to combined axial force and bending moments at ambient temperature, concrete filled tubes (CFTs) show a marginal increase in bending resistance at low level of axial compression, but the bending resistance reduces when the compression force is high. To evaluate the buckling resistance of CFT member subject to axial compression (N) and moment (M), a second order analysis approach is proposed by EC 4: EN 1994-1-1 in which the cross section check can be carried out using the N-M interaction curve which is derived based on the plastic design principle. When the CFTs are further subjected to high temperature due to fire, the design method is however not available in EC 4: EN 1994-1-2. This paper proposes a modified M-N interaction curve based on plastic stress distribution as in EC 4: 1994-1-1 for fire resistance design of CFT members. The superiority of the M-N interaction curve is the universality to both axially loaded members and members subjected to combined axial force and bending moments, regardless of the moments being induced by load eccentricities or initial bow imperfections. Backgrounds of the existing simple calculation model in EC 4 using buckling curves and the proposed M-N interaction curve were first discussed. Then the validity of the said M-N interaction curve was established by comparisons with test results. The proposed M-N interaction curve was found to provide better predictions of the fire resistance than the simple calculation model. Hence, it could be safely extended to EC 4: 1994-1-2 for the design of CFT members under fire. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Thin-Walled Structures Elsevier

Discussion on the applicability of the M-N interaction curve for the fire resistance design of CFT members

Loading next page...
 
/lp/elsevier/discussion-on-the-applicability-of-the-m-n-interaction-curve-for-the-SGnv1QpM6w
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0263-8231
eISSN
1879-3223
D.O.I.
10.1016/j.tws.2018.01.013
Publisher site
See Article on Publisher Site

Abstract

When subjected to combined axial force and bending moments at ambient temperature, concrete filled tubes (CFTs) show a marginal increase in bending resistance at low level of axial compression, but the bending resistance reduces when the compression force is high. To evaluate the buckling resistance of CFT member subject to axial compression (N) and moment (M), a second order analysis approach is proposed by EC 4: EN 1994-1-1 in which the cross section check can be carried out using the N-M interaction curve which is derived based on the plastic design principle. When the CFTs are further subjected to high temperature due to fire, the design method is however not available in EC 4: EN 1994-1-2. This paper proposes a modified M-N interaction curve based on plastic stress distribution as in EC 4: 1994-1-1 for fire resistance design of CFT members. The superiority of the M-N interaction curve is the universality to both axially loaded members and members subjected to combined axial force and bending moments, regardless of the moments being induced by load eccentricities or initial bow imperfections. Backgrounds of the existing simple calculation model in EC 4 using buckling curves and the proposed M-N interaction curve were first discussed. Then the validity of the said M-N interaction curve was established by comparisons with test results. The proposed M-N interaction curve was found to provide better predictions of the fire resistance than the simple calculation model. Hence, it could be safely extended to EC 4: 1994-1-2 for the design of CFT members under fire.

Journal

Thin-Walled StructuresElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off