Discrete particle simulation of particle flow in IsaMill—Effect of grinding medium properties

Discrete particle simulation of particle flow in IsaMill—Effect of grinding medium properties Simulations based on discrete element method (DEM) were conducted to investigate the effect of particle properties, such as particle/particle sliding friction, particle/particle restitution coefficient, particle density and particle size, on the particle flow in IsaMill. The results were analysed in terms of velocity distribution, porosity distribution, collision frequency, collision energy and power draw. It is shown that by decreasing particle/particle sliding friction coefficient, the flow of particles becomes more vigorous which is useful to grinding performance. Although restitution coefficient does not significantly affect the particle flow in IsaMill, grinding media with higher restitution coefficient should be more effective for grinding because they often have higher collision frequency and collision energy. Heavier particles tend to have higher collision frequency and collision energy but require higher power input, so there may exist an optimum particle density for maximum process efficiency. Grinding medium size also affects the flow and hence grinding behaviour although its selection may mainly depend on the particle size of products. The results obtained from the DEM model should be useful for the selection of grinding media for IsaMill process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemical Engineering Journal Elsevier

Discrete particle simulation of particle flow in IsaMill—Effect of grinding medium properties

Loading next page...
 
/lp/elsevier/discrete-particle-simulation-of-particle-flow-in-isamill-effect-of-VdOjo1tGff
Publisher
Elsevier
Copyright
Copyright © 2007 Elsevier B.V.
ISSN
1385-8947
eISSN
1873-3212
DOI
10.1016/j.cej.2007.04.001
Publisher site
See Article on Publisher Site

Abstract

Simulations based on discrete element method (DEM) were conducted to investigate the effect of particle properties, such as particle/particle sliding friction, particle/particle restitution coefficient, particle density and particle size, on the particle flow in IsaMill. The results were analysed in terms of velocity distribution, porosity distribution, collision frequency, collision energy and power draw. It is shown that by decreasing particle/particle sliding friction coefficient, the flow of particles becomes more vigorous which is useful to grinding performance. Although restitution coefficient does not significantly affect the particle flow in IsaMill, grinding media with higher restitution coefficient should be more effective for grinding because they often have higher collision frequency and collision energy. Heavier particles tend to have higher collision frequency and collision energy but require higher power input, so there may exist an optimum particle density for maximum process efficiency. Grinding medium size also affects the flow and hence grinding behaviour although its selection may mainly depend on the particle size of products. The results obtained from the DEM model should be useful for the selection of grinding media for IsaMill process.

Journal

Chemical Engineering JournalElsevier

Published: Jan 15, 2008

References

  • Recent advance in DEM modelling of tumbling mills
    Cleary, P.W.
  • Discrete particle simulation of particle flow in IsaMill
    Jayasundara, C.T.; Yang, R.Y.; Yu, A.B.; Curry, D.
  • Materials properties in fine grinding
    Wolfgang, P.
  • Variables affecting the fine grinding of minerals using stirred mills
    Jankovic, A.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off