Discovery of novel propargylamine-modified 4-aminoalkyl imidazole substituted pyrimidinylthiourea derivatives as multifunctional agents for the treatment of Alzheimer's disease

Discovery of novel propargylamine-modified 4-aminoalkyl imidazole substituted pyrimidinylthiourea... A series of novel propargylamine-modified pyrimidinylthiourea derivatives (1–3) were designed and synthesized as multifunctional agents for Alzheimer's disease (AD) therapy, and their potential was evaluated through various biological experiments. Among these derivatives, compound 1b displayed good selective inhibitory activity against AChE (vs BuChE, IC50 = 0.324 μM, SI > 123) and MAO-B (vs MAO-A, IC50 = 1.427 μM, SI > 35). Molecular docking study showed that the pyrimidinylthiourea moiety of 1b could bind to the catalytic active site (CAS) of AChE, and the propargylamine moiety interacted directly with the flavin adenine dinucleotide (FAD) of MAO-B. Moreover, 1b demonstrated mild antioxidant ability, good copper chelating property, effective inhibitory activity against Cu2+-induced Aβ1−42 aggregation, moderate neuroprotection, low cytotoxicity, and appropriate blood−brain barrier (BBB) permeability in vitro and was capable of ameliorating scopolamine-induced cognitive impairment in mice. These results indicated that 1b has the potential to be a multifunctional candidate for the treatment of Alzheimer's disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Medicinal Chemistry Elsevier

Discovery of novel propargylamine-modified 4-aminoalkyl imidazole substituted pyrimidinylthiourea derivatives as multifunctional agents for the treatment of Alzheimer's disease

Loading next page...
 
/lp/elsevier/discovery-of-novel-propargylamine-modified-4-aminoalkyl-imidazole-O5orR0C408
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Masson SAS
ISSN
0223-5234
eISSN
1768-3254
D.O.I.
10.1016/j.ejmech.2017.08.025
Publisher site
See Article on Publisher Site

Abstract

A series of novel propargylamine-modified pyrimidinylthiourea derivatives (1–3) were designed and synthesized as multifunctional agents for Alzheimer's disease (AD) therapy, and their potential was evaluated through various biological experiments. Among these derivatives, compound 1b displayed good selective inhibitory activity against AChE (vs BuChE, IC50 = 0.324 μM, SI > 123) and MAO-B (vs MAO-A, IC50 = 1.427 μM, SI > 35). Molecular docking study showed that the pyrimidinylthiourea moiety of 1b could bind to the catalytic active site (CAS) of AChE, and the propargylamine moiety interacted directly with the flavin adenine dinucleotide (FAD) of MAO-B. Moreover, 1b demonstrated mild antioxidant ability, good copper chelating property, effective inhibitory activity against Cu2+-induced Aβ1−42 aggregation, moderate neuroprotection, low cytotoxicity, and appropriate blood−brain barrier (BBB) permeability in vitro and was capable of ameliorating scopolamine-induced cognitive impairment in mice. These results indicated that 1b has the potential to be a multifunctional candidate for the treatment of Alzheimer's disease.

Journal

European Journal of Medicinal ChemistryElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off