Discovery of a head-to-tail cyclic peptide as the Keap1-Nrf2 protein-protein interaction inhibitor with high cell potency

Discovery of a head-to-tail cyclic peptide as the Keap1-Nrf2 protein-protein interaction... Directly disrupting Keap1-Nrf2 protein-protein interaction (PPI) has emerged as a novel way to activate Nrf2. Peptide Keap1-Nrf2 PPI inhibitors have been reported with high Keap1 binding affinity. However, these peptide inhibitors show weak activity in cells. In this study, the head-to-tail cyclic strategy was applied in the development of peptide inhibitors. The privileged residue sequence with minimal acidic residues was used as the template for the cyclic peptide, and the appropriate conjugation method was designed based on the peptide-Keap1 binding mode. The glycine was introduced as the linker to connect both sides, which can avoid the terminal charge, enhance the peptide stability and constrain the binding conformation simultaneously. The obtained novel cyclic peptide 3 showed high binding affinity with Keap1 and possessed high potency in Nrf2 activation at cellular level. We also showed that peptide 3 exhibited effective anti-inflammatory effects in mouse RAW 264.7 cells by activating the Nrf2-regulated defense system and enhancing the antioxidant capacity. This study proved that the head-to-tail cyclic strategy is quite useful in improving the cell potency of peptide Keap1-Nrf2 inhibitors and provided a possible way to develop drug-like peptides as therapeutic Nrf2 activators. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Medicinal Chemistry Elsevier

Discovery of a head-to-tail cyclic peptide as the Keap1-Nrf2 protein-protein interaction inhibitor with high cell potency

Loading next page...
 
/lp/elsevier/discovery-of-a-head-to-tail-cyclic-peptide-as-the-keap1-nrf2-protein-AcCn5peode
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Masson SAS
ISSN
0223-5234
eISSN
1768-3254
D.O.I.
10.1016/j.ejmech.2017.10.052
Publisher site
See Article on Publisher Site

Abstract

Directly disrupting Keap1-Nrf2 protein-protein interaction (PPI) has emerged as a novel way to activate Nrf2. Peptide Keap1-Nrf2 PPI inhibitors have been reported with high Keap1 binding affinity. However, these peptide inhibitors show weak activity in cells. In this study, the head-to-tail cyclic strategy was applied in the development of peptide inhibitors. The privileged residue sequence with minimal acidic residues was used as the template for the cyclic peptide, and the appropriate conjugation method was designed based on the peptide-Keap1 binding mode. The glycine was introduced as the linker to connect both sides, which can avoid the terminal charge, enhance the peptide stability and constrain the binding conformation simultaneously. The obtained novel cyclic peptide 3 showed high binding affinity with Keap1 and possessed high potency in Nrf2 activation at cellular level. We also showed that peptide 3 exhibited effective anti-inflammatory effects in mouse RAW 264.7 cells by activating the Nrf2-regulated defense system and enhancing the antioxidant capacity. This study proved that the head-to-tail cyclic strategy is quite useful in improving the cell potency of peptide Keap1-Nrf2 inhibitors and provided a possible way to develop drug-like peptides as therapeutic Nrf2 activators.

Journal

European Journal of Medicinal ChemistryElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off