Direct and Indirect Approaches to Neuroprotective Therapy of Glaucomatous Optic Neuropathy

Direct and Indirect Approaches to Neuroprotective Therapy of Glaucomatous Optic Neuropathy Retinal ganglion cell death is the final common pathway of virtually all diseases of the optic nerve, including glaucomatous optic neuropathy. In recent years it has been shown that retinal ganglion cells die after axonal injury via a programmed cell death process called apoptosis. The dynamics of retinal ganglion cell death reflect the timing and degree of the axonal injury, rather than its nature. For example, whether mediated by ischemia (corresponding to abnormalities of peripapillary circulation) or compression (e.g., changes in retrograde transport caused by increased intraocular pressure), the end result is a series of changes at the level of the axon, which subsequently affect the retinal ganglion cell body. Our studies on neuroprotection of retinal ganglion cells have focused on general mechanisms applicable to axonal injuries. By dissecting the pathways by which retinal ganglion cells die in these situations, strategies for protection may become manifest. We and others have found that production of certain reactive oxygen species is a necessary step for neuronal death after neurotrophin deprivation. In response, cells invoke compensatory mechanisms to maintain survival in the face of this attack. We have studied the transcriptional regulation of one candidate compensatory gene and discuss it as a model for gene-based approaches to neuroprotective therapy for glaucomatous optic neuropathy. By approaching the problem of therapy from this point of view, it may become possible to prevent irreversible glaucomatous optic nerve changes by inducing endogenous cell-rescue mechanisms and, thus, with the retinal ganglion cells’ own defense mechanisms, to prevent its death. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Survey of Ophthalmology Elsevier

Direct and Indirect Approaches to Neuroprotective Therapy of Glaucomatous Optic Neuropathy

Survey of Ophthalmology, Volume 43 – Jun 1, 1999

Loading next page...
 
/lp/elsevier/direct-and-indirect-approaches-to-neuroprotective-therapy-of-DKt0AVIJE9
Publisher
Elsevier
Copyright
Copyright © 1999 Elsevier Science Inc.
ISSN
0039-6257
D.O.I.
10.1016/S0039-6257(99)00027-2
Publisher site
See Article on Publisher Site

Abstract

Retinal ganglion cell death is the final common pathway of virtually all diseases of the optic nerve, including glaucomatous optic neuropathy. In recent years it has been shown that retinal ganglion cells die after axonal injury via a programmed cell death process called apoptosis. The dynamics of retinal ganglion cell death reflect the timing and degree of the axonal injury, rather than its nature. For example, whether mediated by ischemia (corresponding to abnormalities of peripapillary circulation) or compression (e.g., changes in retrograde transport caused by increased intraocular pressure), the end result is a series of changes at the level of the axon, which subsequently affect the retinal ganglion cell body. Our studies on neuroprotection of retinal ganglion cells have focused on general mechanisms applicable to axonal injuries. By dissecting the pathways by which retinal ganglion cells die in these situations, strategies for protection may become manifest. We and others have found that production of certain reactive oxygen species is a necessary step for neuronal death after neurotrophin deprivation. In response, cells invoke compensatory mechanisms to maintain survival in the face of this attack. We have studied the transcriptional regulation of one candidate compensatory gene and discuss it as a model for gene-based approaches to neuroprotective therapy for glaucomatous optic neuropathy. By approaching the problem of therapy from this point of view, it may become possible to prevent irreversible glaucomatous optic nerve changes by inducing endogenous cell-rescue mechanisms and, thus, with the retinal ganglion cells’ own defense mechanisms, to prevent its death.

Journal

Survey of OphthalmologyElsevier

Published: Jun 1, 1999

References

  • Expression of brain-derived neurotrophic factor and of its functional receptor in neonatal and adult rat retina
    Perez, M.T.; Caminos, E.
  • Selective upregulation of cytokine receptor subchain and their intracellular signalling molecules after peripheral nerve injury
    Yao, G.L.; Kato, H.; Khalil, M.
  • Potential neuroprotective therapy for glaucomatous optic neuropathy
    Yoles, E.; Schwartz, M.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off