Dimensionless modeling for convective drying of tuberous crop (Solanum tuberosum) by considering shrinkage

Dimensionless modeling for convective drying of tuberous crop (Solanum tuberosum) by considering... The shrinkage of biological materials (agri-food), is a common phenomenon developed during a drying operation that directly affects the product quality. In this work a dimensionless mathematical model including the reduction at the interface of a high moisture content food (tuber) in 1D geometry was developed. The mass and heat conservation equations coupled to the Leibniz-Reynolds Transport Theorem (LRTT) at the interface of a high moisture content food were solved. The system of nonlinear unsteady state equations was solved by using a multi-frontal massively parallel sparse direct Solver. In order to validate this model, tuberous crop slices were dried at three temperatures: 40, 50 and 60 °C, relative humidity of 25% and a constant airflow of 1.5 m/s. Drying kinetics and the evolution of temperature within the product were logged. The model is able to simulate the moisture loss and predict the highest thickness change. The simulations show a good agreement with the experimental drying kinetics, as well as for the evolution of temperature. Simulations show 1-D shrinkage is not linear and the model improves its prediction when the drying temperature is higher (intensive mass flux). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Engineering Elsevier

Dimensionless modeling for convective drying of tuberous crop (Solanum tuberosum) by considering shrinkage

Loading next page...
 
/lp/elsevier/dimensionless-modeling-for-convective-drying-of-tuberous-crop-solanum-w3UkMcwgGh
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0260-8774
D.O.I.
10.1016/j.jfoodeng.2017.06.014
Publisher site
See Article on Publisher Site

Abstract

The shrinkage of biological materials (agri-food), is a common phenomenon developed during a drying operation that directly affects the product quality. In this work a dimensionless mathematical model including the reduction at the interface of a high moisture content food (tuber) in 1D geometry was developed. The mass and heat conservation equations coupled to the Leibniz-Reynolds Transport Theorem (LRTT) at the interface of a high moisture content food were solved. The system of nonlinear unsteady state equations was solved by using a multi-frontal massively parallel sparse direct Solver. In order to validate this model, tuberous crop slices were dried at three temperatures: 40, 50 and 60 °C, relative humidity of 25% and a constant airflow of 1.5 m/s. Drying kinetics and the evolution of temperature within the product were logged. The model is able to simulate the moisture loss and predict the highest thickness change. The simulations show a good agreement with the experimental drying kinetics, as well as for the evolution of temperature. Simulations show 1-D shrinkage is not linear and the model improves its prediction when the drying temperature is higher (intensive mass flux).

Journal

Journal of Food EngineeringElsevier

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off