Dihydroxyacetone, the active browning ingredient in sunless tanning lotions, induces DNA damage, cell-cycle block and apoptosis in cultured HaCaT keratinocytes

Dihydroxyacetone, the active browning ingredient in sunless tanning lotions, induces DNA damage,... Dihydroxyacetone (DHA), the active substance in sunless tanning lotions reacts with the amino groups of proteins to form a brown-colored complex. This non-enzymatic glycation, known as the Maillard reaction, can also occur with free amino groups in DNA, raising the possibility that DHA may be genotoxic. To address this issue we investigated the effects of DHA on cell survival and proliferation of a human keratinocyte cell line, HaCaT. Dose- and time-dependent morphological changes, chromatin condensation, cytoplasmic budding and cell detachment were seen in cells treated with DHA. Several dead cells were observed after long-time (24 h) incubation with 25 mM DHA or more. Furthermore, an extensive decline in proliferation was observed 1 day after DHA exposure for 24 h. When applied in different concentrations (5–50 mM) and for different time periods (1, 3 or 24 h) DHA caused a G 2 /M block after the cyclin B 1 restriction point. Exit from this cell-cycle block was associated with massive apoptosis, as revealed by a clonogenic assay, TUNEL staining and electron microscopy. Furthermore, DHA caused DNA damage as revealed by the alkaline comet assay. Preincubation with antioxidants prevented the formation of DNA strand breaks. The DHA toxicity may be caused by direct redox reactions, with formation of ROS as the crucial intermediates. The genotoxic capacity of DHA raises a question about the long-term clinical consequences of treatment of the skin with this commonly used compound. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mutation Research - Genetic Toxicology and Environmental Mutagenesis Elsevier

Dihydroxyacetone, the active browning ingredient in sunless tanning lotions, induces DNA damage, cell-cycle block and apoptosis in cultured HaCaT keratinocytes

Loading next page...
 
/lp/elsevier/dihydroxyacetone-the-active-browning-ingredient-in-sunless-tanning-UtUd1Dv207
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier B.V.
ISSN
1383-5718
eISSN
1879-3592
D.O.I.
10.1016/j.mrgentox.2004.03.002
Publisher site
See Article on Publisher Site

Abstract

Dihydroxyacetone (DHA), the active substance in sunless tanning lotions reacts with the amino groups of proteins to form a brown-colored complex. This non-enzymatic glycation, known as the Maillard reaction, can also occur with free amino groups in DNA, raising the possibility that DHA may be genotoxic. To address this issue we investigated the effects of DHA on cell survival and proliferation of a human keratinocyte cell line, HaCaT. Dose- and time-dependent morphological changes, chromatin condensation, cytoplasmic budding and cell detachment were seen in cells treated with DHA. Several dead cells were observed after long-time (24 h) incubation with 25 mM DHA or more. Furthermore, an extensive decline in proliferation was observed 1 day after DHA exposure for 24 h. When applied in different concentrations (5–50 mM) and for different time periods (1, 3 or 24 h) DHA caused a G 2 /M block after the cyclin B 1 restriction point. Exit from this cell-cycle block was associated with massive apoptosis, as revealed by a clonogenic assay, TUNEL staining and electron microscopy. Furthermore, DHA caused DNA damage as revealed by the alkaline comet assay. Preincubation with antioxidants prevented the formation of DNA strand breaks. The DHA toxicity may be caused by direct redox reactions, with formation of ROS as the crucial intermediates. The genotoxic capacity of DHA raises a question about the long-term clinical consequences of treatment of the skin with this commonly used compound.

Journal

Mutation Research - Genetic Toxicology and Environmental MutagenesisElsevier

Published: Jun 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off