Different protocols of treadmill exercise induce distinct neuroplastic effects in rat brain motor areas

Different protocols of treadmill exercise induce distinct neuroplastic effects in rat brain motor... A variety of exercise protocols have been used to promote experimental neuroplasticity. However, the plastic brain responses generated by several aspects of training (types, frequency, regimens, duration) remain undetermined. The aim of this study was to compare the plastic changes in the glutamatergic system and synaptic proteins in motor cortex, striatum and cerebellum promoted by two different treadmill exercise regimens. The present study analyzed by immunohistochemistry and Western blotting the expression of the subunits of AMPA receptors (GluA1 and GluA2/3) and synaptic proteins (synapsin I and synaptophysin) in adult male Wistar rat brains. The animals were divided into animals subjected to two different frequencies of aerobic exercise groups and sedentary animals. The exercise groups were: intermittent treadmill exercise (ITE) – animals that exercised 3 times a week (every other day) during four weeks, and continuous treadmill exercise (CTE) – animals that exercised every day during four weeks. Our results reveal that different protocols of treadmill exercise were able to promote distinct synaptic reorganization processes among the exercised groups. In general, the intermittent exercise regimen induced a higher expression of presynaptic proteins, whereas the continuous exercise regimen increased postsynaptic GluA1 and GluA2/3 receptors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Research Elsevier

Different protocols of treadmill exercise induce distinct neuroplastic effects in rat brain motor areas

Loading next page...
 
/lp/elsevier/different-protocols-of-treadmill-exercise-induce-distinct-neuroplastic-4v11pgHbnm
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier B.V.
ISSN
0006-8993
D.O.I.
10.1016/j.brainres.2015.06.052
Publisher site
See Article on Publisher Site

Abstract

A variety of exercise protocols have been used to promote experimental neuroplasticity. However, the plastic brain responses generated by several aspects of training (types, frequency, regimens, duration) remain undetermined. The aim of this study was to compare the plastic changes in the glutamatergic system and synaptic proteins in motor cortex, striatum and cerebellum promoted by two different treadmill exercise regimens. The present study analyzed by immunohistochemistry and Western blotting the expression of the subunits of AMPA receptors (GluA1 and GluA2/3) and synaptic proteins (synapsin I and synaptophysin) in adult male Wistar rat brains. The animals were divided into animals subjected to two different frequencies of aerobic exercise groups and sedentary animals. The exercise groups were: intermittent treadmill exercise (ITE) – animals that exercised 3 times a week (every other day) during four weeks, and continuous treadmill exercise (CTE) – animals that exercised every day during four weeks. Our results reveal that different protocols of treadmill exercise were able to promote distinct synaptic reorganization processes among the exercised groups. In general, the intermittent exercise regimen induced a higher expression of presynaptic proteins, whereas the continuous exercise regimen increased postsynaptic GluA1 and GluA2/3 receptors.

Journal

Brain ResearchElsevier

Published: Oct 22, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off