Differences in oxidative potential of black carbon from three combustion emission sources in China

Differences in oxidative potential of black carbon from three combustion emission sources in China Black carbon (BC) is mainly derived from the incomplete combustion of fossil fuels and biomass, and poses a serious threat to human health. Actual BC from extensive emission sources presents a variety of characteristics that are likely associated with different oxidative potentials (OP) and health endpoints. In the present study, BC derived from three main emission sources (residential coal combustion, biomass burning, and diesel engine exhaust) in China was subjected to physiochemical characterization and its OP was tested using dithiothreitol (DTT) assay. In order to obtain actual BC, the water-soluble part (WS) and organic extract (OE) were eluted successively from PM and the residue particle (RP) were reserved. PM from diesel vehicles had the most effective DTT consumption capacity, followed by PM from biomass and coal burning. And the OP of PM was mostly attributed to its RP part which mainly consisted of metals and BC. SEM/TEM, OC/EC, IC, and ICP-MS measurements confirmed that soluble ions and organic compounds were washed off effectively, while some metals were still retained in the RP part. Thus, the OP of BC was evaluated after adding DTPA to inhibit DTT activity caused by metals in the RP. Significant differences in OP and physiochemical characteristics of BC from the three emission sources were observed. BC from diesel exhaust exhibited the highest DTT activity (15.5 ± 12.6 pmol min−1 μg−1) compared to that of BC from biomass (2.5 ± 1.0 pmol min−1 μg−1) and coal (1.3 ± 0.5 pmol min−1 μg−1) burning. Diesel exhaust BC, which was emitted under the highest combustion temperature, had the smallest size. Coal consumption in China contributes to the highest amount of BC mass emission, but our result indicates that diesel exhaust BC has the greatest OP. An emission inventory based on health impacts is urgently needed to control air pollution sources in the future. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Environmental Management Elsevier

Differences in oxidative potential of black carbon from three combustion emission sources in China

Loading next page...
 
/lp/elsevier/differences-in-oxidative-potential-of-black-carbon-from-three-hlsh1xKvHg
Publisher
Elsevier
Copyright
Copyright © 2019 Elsevier Ltd
ISSN
0301-4797
D.O.I.
10.1016/j.jenvman.2019.03.070
Publisher site
See Article on Publisher Site

Abstract

Black carbon (BC) is mainly derived from the incomplete combustion of fossil fuels and biomass, and poses a serious threat to human health. Actual BC from extensive emission sources presents a variety of characteristics that are likely associated with different oxidative potentials (OP) and health endpoints. In the present study, BC derived from three main emission sources (residential coal combustion, biomass burning, and diesel engine exhaust) in China was subjected to physiochemical characterization and its OP was tested using dithiothreitol (DTT) assay. In order to obtain actual BC, the water-soluble part (WS) and organic extract (OE) were eluted successively from PM and the residue particle (RP) were reserved. PM from diesel vehicles had the most effective DTT consumption capacity, followed by PM from biomass and coal burning. And the OP of PM was mostly attributed to its RP part which mainly consisted of metals and BC. SEM/TEM, OC/EC, IC, and ICP-MS measurements confirmed that soluble ions and organic compounds were washed off effectively, while some metals were still retained in the RP part. Thus, the OP of BC was evaluated after adding DTPA to inhibit DTT activity caused by metals in the RP. Significant differences in OP and physiochemical characteristics of BC from the three emission sources were observed. BC from diesel exhaust exhibited the highest DTT activity (15.5 ± 12.6 pmol min−1 μg−1) compared to that of BC from biomass (2.5 ± 1.0 pmol min−1 μg−1) and coal (1.3 ± 0.5 pmol min−1 μg−1) burning. Diesel exhaust BC, which was emitted under the highest combustion temperature, had the smallest size. Coal consumption in China contributes to the highest amount of BC mass emission, but our result indicates that diesel exhaust BC has the greatest OP. An emission inventory based on health impacts is urgently needed to control air pollution sources in the future.

Journal

Journal of Environmental ManagementElsevier

Published: Jun 15, 2019

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off