Developmental toxicity and potential mechanisms of pyraoxystrobin to zebrafish (Danio rerio)

Developmental toxicity and potential mechanisms of pyraoxystrobin to zebrafish (Danio rerio) As a newly developed, highly efficient strobilurin fungicide, pyraoxystrobin has been reported to be highly toxic to some aquatic organisms. However, the toxicity of pyraoxystrobin to different life stages of fish and the potential underlying mechanisms are still unknown. Hence, in the present study, the acute toxicity of pyraoxystrobin to different life stages of zebrafish (embryo, larva, and adult) was assessed. The developmental toxicity of pyraoxystrobin to zebrafish embryos and its effects on gene transcription in the embryo were also investigated. The results showed that the 96-h LC50 values of pyraoxystrobin to embryos [2h post-fertilization (hpf)], 12h post-hatching (hph) larvae (84 hpf), 72 hph larvae (144 hpf), and adult zebrafish were 4.099, 1.069, 3.236, and 5.970µg/L, respectively. This suggests that pyraoxystrobin has very high toxicity to different life stages of zebrafish, while the newly hatched larvae constitute the most sensitive period of zebrafish to pyraoxystrobin. Decreased heart rate, hatching inhibition, growth regression, and morphological deformities were observed in zebrafish embryos after acute exposure to different concentrations of pyraoxystrobin. The rate of malformation increased in a time- and concentration-dependent manner in embryos, and the most pronounced abnormality was pericardial edema and yolk sac edema. Pyraoxystrobin (2 and 4μg/L) significantly altered the mRNA levels of genes related to mitochondrial respiratory chain and ATP synthesis (NDI, uqcrc, and ATPo6), oxidative stress (Mn-Sod, Cat, and Gpx), apoptosis (p53, Bcl2, Bax, and Cas3), and immune system (TNFα, IFN, and IL-1b) in zebrafish embryos. This result indicates that the alteration of these genes is a potential mechanism underlying the toxic effects of pyraoxystrobin on zebrafish. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Developmental toxicity and potential mechanisms of pyraoxystrobin to zebrafish (Danio rerio)

Loading next page...
 
/lp/elsevier/developmental-toxicity-and-potential-mechanisms-of-pyraoxystrobin-to-An9ES5j4YN
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2017.12.061
Publisher site
See Article on Publisher Site

Abstract

As a newly developed, highly efficient strobilurin fungicide, pyraoxystrobin has been reported to be highly toxic to some aquatic organisms. However, the toxicity of pyraoxystrobin to different life stages of fish and the potential underlying mechanisms are still unknown. Hence, in the present study, the acute toxicity of pyraoxystrobin to different life stages of zebrafish (embryo, larva, and adult) was assessed. The developmental toxicity of pyraoxystrobin to zebrafish embryos and its effects on gene transcription in the embryo were also investigated. The results showed that the 96-h LC50 values of pyraoxystrobin to embryos [2h post-fertilization (hpf)], 12h post-hatching (hph) larvae (84 hpf), 72 hph larvae (144 hpf), and adult zebrafish were 4.099, 1.069, 3.236, and 5.970µg/L, respectively. This suggests that pyraoxystrobin has very high toxicity to different life stages of zebrafish, while the newly hatched larvae constitute the most sensitive period of zebrafish to pyraoxystrobin. Decreased heart rate, hatching inhibition, growth regression, and morphological deformities were observed in zebrafish embryos after acute exposure to different concentrations of pyraoxystrobin. The rate of malformation increased in a time- and concentration-dependent manner in embryos, and the most pronounced abnormality was pericardial edema and yolk sac edema. Pyraoxystrobin (2 and 4μg/L) significantly altered the mRNA levels of genes related to mitochondrial respiratory chain and ATP synthesis (NDI, uqcrc, and ATPo6), oxidative stress (Mn-Sod, Cat, and Gpx), apoptosis (p53, Bcl2, Bax, and Cas3), and immune system (TNFα, IFN, and IL-1b) in zebrafish embryos. This result indicates that the alteration of these genes is a potential mechanism underlying the toxic effects of pyraoxystrobin on zebrafish.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: Apr 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off