Development of robust meteorological year weather data

Development of robust meteorological year weather data Building energy performance simulations are limited to typical meteorological weather conditions available in simulation software. Such simulations are insufficient for analysing energy performance sensitivity to a range of probable weather conditions. This research presents a method for developing robust meteorological weather data that can be used for energy performance sensitivity analysis without the need to access historical weather data. The method decomposes dry bulb temperature (DBT) and global horizontal solar radiation (H) into deterministic and stochastic components. For the typical weather data of the City of Adelaide, the deterministic component for each of DBT and H consists of a single frequency Fourier series. The stochastic components consist of 1-lag and 2-lags autoregressive models for DBT and H respectively. The stochastic components also include randomly selected values from the residuals of the autoregressive models. Based on this method, the coldest and hottest weather conditions were selected to simulate the energy performance of a single space. The results revealed 39% more cooling and 15% less heating in the hottest year, and 14% more heating and 64% less cooling in the coldest year. The results indicate that simulations based on typical weather conditions only are insufficient for assessing buildings' energy performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

Development of robust meteorological year weather data

Loading next page...
 
/lp/elsevier/development-of-robust-meteorological-year-weather-data-NhH32B8waQ
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2017.11.033
Publisher site
See Article on Publisher Site

Abstract

Building energy performance simulations are limited to typical meteorological weather conditions available in simulation software. Such simulations are insufficient for analysing energy performance sensitivity to a range of probable weather conditions. This research presents a method for developing robust meteorological weather data that can be used for energy performance sensitivity analysis without the need to access historical weather data. The method decomposes dry bulb temperature (DBT) and global horizontal solar radiation (H) into deterministic and stochastic components. For the typical weather data of the City of Adelaide, the deterministic component for each of DBT and H consists of a single frequency Fourier series. The stochastic components consist of 1-lag and 2-lags autoregressive models for DBT and H respectively. The stochastic components also include randomly selected values from the residuals of the autoregressive models. Based on this method, the coldest and hottest weather conditions were selected to simulate the energy performance of a single space. The results revealed 39% more cooling and 15% less heating in the hottest year, and 14% more heating and 64% less cooling in the coldest year. The results indicate that simulations based on typical weather conditions only are insufficient for assessing buildings' energy performance.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off