Development of online microdialysis-mass spectrometry for continuous minimally invasive measurement of soil solution dynamics

Development of online microdialysis-mass spectrometry for continuous minimally invasive... The rate that amino acids are removed from the soil solution is poorly known but vitally important. It is possible to determine the time course of soil solution concentrations by extracting soils at different time points after adding labelled compounds, but this approach either lacks sufficient temporal resolution or generates large number of samples that require subsequent offline analysis. The aim of this study was to develop online microdialysis-mass spectrometry to enable the minimally invasive measurement of the time-course of isotope labelled amino acid added to soil. The method was subsequently tested by examining the fate of isotope labelled L- and d-alanine added to sterile and non-sterile soils. One concern with application of microdialysis to soil is if calibrations are affected by inorganic ion composition of the perfusate and the external (soil) solution. Tests showed that the presence/absence of inorganic ions in perfusate and external solution did not affect dialysate concentrations, suggesting that perfusing with an artificial soil solution matching the inorganic ion composition of the external solution does not convey any benefits. Hence water was used as perfusate for development of online microdialysis-mass spectrometry. The online system took around one minute to equilibrate to step-changes in concentration and had detection limits around 0.5 μmol L−1 for alanine. Addition of isotope labelled alanine to soils led to an almost instantaneous increase and subsequent decrease in dialysate alanine concentration. With sterile soils there was a slow abiotic decrease in dialysate concentrations, presumably due to development of a depletion shell around the microdialysis probe and adsorption of alanine to the soil. For non-sterile soils there was an additional more rapid biotic decrease in dialysate concentrations that presumably reflected microbial uptake. For l-alanine added to non-sterile soil much of the compound was taken up before it reached the probe surface and concentrations decreased to below detection limits within 5–20 min. Thus microdialysis afforded a graphic illustration of the ephemeral nature of intact l-alanine in non-sterile soil, while parallel measurements showed that added d-alanine was removed from soil solution several times more slowly. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soil Biology and Biochemistry Elsevier

Development of online microdialysis-mass spectrometry for continuous minimally invasive measurement of soil solution dynamics

Loading next page...
 
/lp/elsevier/development-of-online-microdialysis-mass-spectrometry-for-continuous-uzE39NLq8R
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0038-0717
D.O.I.
10.1016/j.soilbio.2018.05.022
Publisher site
See Article on Publisher Site

Abstract

The rate that amino acids are removed from the soil solution is poorly known but vitally important. It is possible to determine the time course of soil solution concentrations by extracting soils at different time points after adding labelled compounds, but this approach either lacks sufficient temporal resolution or generates large number of samples that require subsequent offline analysis. The aim of this study was to develop online microdialysis-mass spectrometry to enable the minimally invasive measurement of the time-course of isotope labelled amino acid added to soil. The method was subsequently tested by examining the fate of isotope labelled L- and d-alanine added to sterile and non-sterile soils. One concern with application of microdialysis to soil is if calibrations are affected by inorganic ion composition of the perfusate and the external (soil) solution. Tests showed that the presence/absence of inorganic ions in perfusate and external solution did not affect dialysate concentrations, suggesting that perfusing with an artificial soil solution matching the inorganic ion composition of the external solution does not convey any benefits. Hence water was used as perfusate for development of online microdialysis-mass spectrometry. The online system took around one minute to equilibrate to step-changes in concentration and had detection limits around 0.5 μmol L−1 for alanine. Addition of isotope labelled alanine to soils led to an almost instantaneous increase and subsequent decrease in dialysate alanine concentration. With sterile soils there was a slow abiotic decrease in dialysate concentrations, presumably due to development of a depletion shell around the microdialysis probe and adsorption of alanine to the soil. For non-sterile soils there was an additional more rapid biotic decrease in dialysate concentrations that presumably reflected microbial uptake. For l-alanine added to non-sterile soil much of the compound was taken up before it reached the probe surface and concentrations decreased to below detection limits within 5–20 min. Thus microdialysis afforded a graphic illustration of the ephemeral nature of intact l-alanine in non-sterile soil, while parallel measurements showed that added d-alanine was removed from soil solution several times more slowly.

Journal

Soil Biology and BiochemistryElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off