Development of multi-metal interaction model for Daphnia magna: Significance of metallothionein in cellular redistribution

Development of multi-metal interaction model for Daphnia magna: Significance of metallothionein... Despite the great progress made in metal-induced toxicity mechanisms, a critical knowledge gap still exists in predicting adverse effects of heavy metals on living organisms in the natural environment, particularly during exposure to multi-metals. In this study, a multi-metal interaction model of Daphnia manga was developed in an effort to provide reasonable explanations regarding the joint effects resulting from exposure to multi-metals. Metallothionein (MT), a widely used biomarker, was selected. In this model, MT was supposed to play the role of a crucial transfer protein rather than detoxifying protein. Therefore, competitive complexation of metals to MT could highly affect the cellular metal redistribution. Thus, competitive complexation of MT in D. magna with metals like Pb2+, Cd2+ and Cu2+ was qualitatively studied. The results suggested that Cd2+ had the highest affinity towards MT, followed by Pb2+ and Cu2+. On the other hand, the combination of MT with Cu2+ appeared to alter its structure which resulted in higher affinity towards Pb2+. Overall, the predicted bioaccumulation of metals under multi-metal exposure was consisted with earlier reported studies. This model provided an alternative angle for joint effect through a combination of kinetic process and internal interactions, which could help to develop future models predicting toxicity to multi-metal exposure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Development of multi-metal interaction model for Daphnia magna: Significance of metallothionein in cellular redistribution

Loading next page...
 
/lp/elsevier/development-of-multi-metal-interaction-model-for-daphnia-magna-zU0Y8tbrSY
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2017.12.040
Publisher site
See Article on Publisher Site

Abstract

Despite the great progress made in metal-induced toxicity mechanisms, a critical knowledge gap still exists in predicting adverse effects of heavy metals on living organisms in the natural environment, particularly during exposure to multi-metals. In this study, a multi-metal interaction model of Daphnia manga was developed in an effort to provide reasonable explanations regarding the joint effects resulting from exposure to multi-metals. Metallothionein (MT), a widely used biomarker, was selected. In this model, MT was supposed to play the role of a crucial transfer protein rather than detoxifying protein. Therefore, competitive complexation of metals to MT could highly affect the cellular metal redistribution. Thus, competitive complexation of MT in D. magna with metals like Pb2+, Cd2+ and Cu2+ was qualitatively studied. The results suggested that Cd2+ had the highest affinity towards MT, followed by Pb2+ and Cu2+. On the other hand, the combination of MT with Cu2+ appeared to alter its structure which resulted in higher affinity towards Pb2+. Overall, the predicted bioaccumulation of metals under multi-metal exposure was consisted with earlier reported studies. This model provided an alternative angle for joint effect through a combination of kinetic process and internal interactions, which could help to develop future models predicting toxicity to multi-metal exposure.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: Apr 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off