Development of a mixed seawater-hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (∼2.7 Ga) Abitibi Greenstone Belt, Canada

Development of a mixed seawater-hydrothermal fluid geochemical signature during alteration of... We investigated a group of silicified volcanic rocks from the ∼2.72 Ga Hunter Mine Group (HMG), Abitibi Greenstone Belt, Canada, in order to document progressive compositional change associated with alteration in a subaqueous caldera system. Rocks of the HMG divide into three groups based on mineralogy and texture for petrographic and geochemical analyses. Volcanic features (phenocrysts, pseudomorphs after primary glass shards, lapilli, volcanic clasts) are preserved in all groups, despite changing mineralogy from primarily quartz, feldspar, chlorite (Groups 1 and 2), to quartz, hematite and carbonate (Groups 2 and 3). Compositionally, Group 1 rocks resemble volcanic rocks in the region, while Group 2 and 3 rocks show a change in mineralogy to iron, silica, and carbonate minerals, which is associated with depletion of many major and trace elements associated with volcanic rocks (Al2O3, Na2O, K2O, Zr). In addition, rare earth elements display a clear progression from volcanic signatures in Group 1 (PrSN/YbSN = 1.7–2.96, EuSN/EuSN∗ = 0.84–1.72, Y/Ho = 25.20–27.41, LaSN/LaSN∗ = 0.97–1.29, and Zr/Hf = 38.38–42.09) to transitional mixed volcanic, hydrothermal, and seawater signatures in Group 2 (PrSN/YbSN 1.33–2.89, EuSN/EuSN∗ 1.33–2.5, Y/Ho = 23.94–30, LaSN/LaSN∗ 0.93–1.34, and Zr/Hf = 40–70), to mixed hydrothermal and seawater signatures in Group 3 (PrSN/YbSN 0.62–2.88, EuSN/EuSN∗ 1.30–7.15, LaSN/LaSN∗ 1.02–1.86, Y/Ho = 25.56–55, and Zr/Hf = 35–50).We interpret that silicification of volcanic rocks (Group 1) produced transitional altered volcanic rocks (Group 2), and siliceous and jaspilitic rocks (Group 3), based on preservation of delicate volcanic features. Building on this explanation, we interpret that major, trace- and rare-earth element mobility occurred during the process of silicification, during which siliceous and jaspilitic rocks (Group 3) acquired aspects of the rare-earth element geochemical signatures of marine chemical precipitates. We conclude that seafloor silicification in hydrothermal depositional settings is capable of producing rocks that resemble marine chemical precipitates such as banded iron formation, and could be a process that is widespread in the Archean. Consequently, because silicified volcanic rocks from the HMG possess mixed seawater and hydrothermal rare-earth element characteristics similar to Archean iron formations and cherts, we suggest caution must be exercised when interpreting the geochemical information preserved in metamorphosed rocks where original genesis is unknown. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geochimica et Cosmochimica Acta Elsevier

Development of a mixed seawater-hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (∼2.7 Ga) Abitibi Greenstone Belt, Canada

Loading next page...
 
/lp/elsevier/development-of-a-mixed-seawater-hydrothermal-fluid-geochemical-Cm3JNg7iQJ
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0016-7037
eISSN
1872-9533
D.O.I.
10.1016/j.gca.2018.02.019
Publisher site
See Article on Publisher Site

Abstract

We investigated a group of silicified volcanic rocks from the ∼2.72 Ga Hunter Mine Group (HMG), Abitibi Greenstone Belt, Canada, in order to document progressive compositional change associated with alteration in a subaqueous caldera system. Rocks of the HMG divide into three groups based on mineralogy and texture for petrographic and geochemical analyses. Volcanic features (phenocrysts, pseudomorphs after primary glass shards, lapilli, volcanic clasts) are preserved in all groups, despite changing mineralogy from primarily quartz, feldspar, chlorite (Groups 1 and 2), to quartz, hematite and carbonate (Groups 2 and 3). Compositionally, Group 1 rocks resemble volcanic rocks in the region, while Group 2 and 3 rocks show a change in mineralogy to iron, silica, and carbonate minerals, which is associated with depletion of many major and trace elements associated with volcanic rocks (Al2O3, Na2O, K2O, Zr). In addition, rare earth elements display a clear progression from volcanic signatures in Group 1 (PrSN/YbSN = 1.7–2.96, EuSN/EuSN∗ = 0.84–1.72, Y/Ho = 25.20–27.41, LaSN/LaSN∗ = 0.97–1.29, and Zr/Hf = 38.38–42.09) to transitional mixed volcanic, hydrothermal, and seawater signatures in Group 2 (PrSN/YbSN 1.33–2.89, EuSN/EuSN∗ 1.33–2.5, Y/Ho = 23.94–30, LaSN/LaSN∗ 0.93–1.34, and Zr/Hf = 40–70), to mixed hydrothermal and seawater signatures in Group 3 (PrSN/YbSN 0.62–2.88, EuSN/EuSN∗ 1.30–7.15, LaSN/LaSN∗ 1.02–1.86, Y/Ho = 25.56–55, and Zr/Hf = 35–50).We interpret that silicification of volcanic rocks (Group 1) produced transitional altered volcanic rocks (Group 2), and siliceous and jaspilitic rocks (Group 3), based on preservation of delicate volcanic features. Building on this explanation, we interpret that major, trace- and rare-earth element mobility occurred during the process of silicification, during which siliceous and jaspilitic rocks (Group 3) acquired aspects of the rare-earth element geochemical signatures of marine chemical precipitates. We conclude that seafloor silicification in hydrothermal depositional settings is capable of producing rocks that resemble marine chemical precipitates such as banded iron formation, and could be a process that is widespread in the Archean. Consequently, because silicified volcanic rocks from the HMG possess mixed seawater and hydrothermal rare-earth element characteristics similar to Archean iron formations and cherts, we suggest caution must be exercised when interpreting the geochemical information preserved in metamorphosed rocks where original genesis is unknown.

Journal

Geochimica et Cosmochimica ActaElsevier

Published: Apr 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off