Development of a machine for the automatic sorting of pomegranate ( Punica granatum ) arils based on computer vision

Development of a machine for the automatic sorting of pomegranate ( Punica granatum ) arils based... The pomegranate is a fruit with excellent organoleptic and nutritional properties, but the fact that it is difficult to peel affects its commercialisation and decreases its potential consumption. One solution is to market the arils of pomegranate in a ready-to-eat form. However, after the peeling process, unwanted material, such as internal membranes and defective arils, is extracted together with good arils and must be removed on the packing line because the presence of such material shortens the shelf life of the product or deteriorates its appearance. For different reasons, the commercial sorting machines that are currently available for similar commodities (cherries, nuts, rice, etc.) are not capable of handling and sorting pomegranate arils, thus making it necessary to build specific equipment. This work describes the development of a computer vision-based machine to inspect the raw material coming from the extraction process and classify it in four categories. The machine is capable of detecting and removing unwanted material and sorting the arils by colour. The prototype is composed of three units, which are designed to singulate the objects to allow them be inspected individually and sorted. The inspection unit relies on a computer vision system. Two image segmentation methods were tested: one uses a threshold on the R/G ratio and the other is a more complex approach based on Bayesian Linear Discriminant Analysis (LDA) in the RGB space. Both methods offered an average success rate of 90% on a validation set, the former being more intuitive for the operators, as well as faster and easier to implement, and for these reasons it was included in the prototype. Subsequently, the complete machine was tested in industry by working in real conditions throughout a whole pomegranate season, in which it automatically sorted more than nine tons of arils. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Engineering Elsevier

Development of a machine for the automatic sorting of pomegranate ( Punica granatum ) arils based on computer vision

Loading next page...
 
/lp/elsevier/development-of-a-machine-for-the-automatic-sorting-of-pomegranate-kF9tHpGK0q
Publisher
Elsevier
Copyright
Copyright © 2008 Elsevier Ltd
ISSN
0260-8774
D.O.I.
10.1016/j.jfoodeng.2008.05.035
Publisher site
See Article on Publisher Site

Abstract

The pomegranate is a fruit with excellent organoleptic and nutritional properties, but the fact that it is difficult to peel affects its commercialisation and decreases its potential consumption. One solution is to market the arils of pomegranate in a ready-to-eat form. However, after the peeling process, unwanted material, such as internal membranes and defective arils, is extracted together with good arils and must be removed on the packing line because the presence of such material shortens the shelf life of the product or deteriorates its appearance. For different reasons, the commercial sorting machines that are currently available for similar commodities (cherries, nuts, rice, etc.) are not capable of handling and sorting pomegranate arils, thus making it necessary to build specific equipment. This work describes the development of a computer vision-based machine to inspect the raw material coming from the extraction process and classify it in four categories. The machine is capable of detecting and removing unwanted material and sorting the arils by colour. The prototype is composed of three units, which are designed to singulate the objects to allow them be inspected individually and sorted. The inspection unit relies on a computer vision system. Two image segmentation methods were tested: one uses a threshold on the R/G ratio and the other is a more complex approach based on Bayesian Linear Discriminant Analysis (LDA) in the RGB space. Both methods offered an average success rate of 90% on a validation set, the former being more intuitive for the operators, as well as faster and easier to implement, and for these reasons it was included in the prototype. Subsequently, the complete machine was tested in industry by working in real conditions throughout a whole pomegranate season, in which it automatically sorted more than nine tons of arils.

Journal

Journal of Food EngineeringElsevier

Published: Jan 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off