Development and characterization of cyclic olefin copolymer thin films and their dielectric characteristics as CPW substrate by means of Terahertz Time Domain Spectroscopy

Development and characterization of cyclic olefin copolymer thin films and their dielectric... We describe recent advances in the fabrication of cyclic olefin copolymer (COC) thin films and their electrical characteristics between 0.3 and 2 THz (terahertz). COC films were fabricated by dissolving the raw material in toluene at different concentrations. Three different techniques were used to fabricate thin solid films of COC: Spin Coating (SC), in-house developed technique Vacuum Solvent Desorption (VSD), and Thermic Solvent Desorption (TSD). Film characteristics such as roughness, thicknesses, and homogeneity were compared. These studies were performed to establish the technique that ensures the lowest roughness, highest homogeneity, and best control over thin film thickness. We also investigated the effect of film roughness and homogeneity on dispersion and losses related to the complex dielectric function ε(f). Then, we used Terahertz Time-Domain Spectroscopy (THz-TDS) characterization up to 2 THz to obtain the dielectric function of COC thin films fabricated by the three methods, and we compare these values with values in literature and state-of-the-art polymeric material BCB. We found that COC has low dispersion (the real part of the dielectric function is almost constant with frequency up to 2 THz), low losses regardless of the fabrication technique, and negligible losses due to roughness and non-homogeneity. Finally, we report the design of a coplanar waveguide, its loss characterization (0.1–0.6 THz), and the microfabrication process on a COC substrate. These results clearly demonstrate that COC films are serious contenders for developing low-loss and low-cost THz electronic devices and optoelectronics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microelectronic Engineering Elsevier

Development and characterization of cyclic olefin copolymer thin films and their dielectric characteristics as CPW substrate by means of Terahertz Time Domain Spectroscopy

Loading next page...
 
/lp/elsevier/development-and-characterization-of-cyclic-olefin-copolymer-thin-films-XJwrR5dOGT
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0167-9317
eISSN
1873-5568
D.O.I.
10.1016/j.mee.2018.01.036
Publisher site
See Article on Publisher Site

Abstract

We describe recent advances in the fabrication of cyclic olefin copolymer (COC) thin films and their electrical characteristics between 0.3 and 2 THz (terahertz). COC films were fabricated by dissolving the raw material in toluene at different concentrations. Three different techniques were used to fabricate thin solid films of COC: Spin Coating (SC), in-house developed technique Vacuum Solvent Desorption (VSD), and Thermic Solvent Desorption (TSD). Film characteristics such as roughness, thicknesses, and homogeneity were compared. These studies were performed to establish the technique that ensures the lowest roughness, highest homogeneity, and best control over thin film thickness. We also investigated the effect of film roughness and homogeneity on dispersion and losses related to the complex dielectric function ε(f). Then, we used Terahertz Time-Domain Spectroscopy (THz-TDS) characterization up to 2 THz to obtain the dielectric function of COC thin films fabricated by the three methods, and we compare these values with values in literature and state-of-the-art polymeric material BCB. We found that COC has low dispersion (the real part of the dielectric function is almost constant with frequency up to 2 THz), low losses regardless of the fabrication technique, and negligible losses due to roughness and non-homogeneity. Finally, we report the design of a coplanar waveguide, its loss characterization (0.1–0.6 THz), and the microfabrication process on a COC substrate. These results clearly demonstrate that COC films are serious contenders for developing low-loss and low-cost THz electronic devices and optoelectronics.

Journal

Microelectronic EngineeringElsevier

Published: May 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off