Determination of optimal plaster thickness for moisture buffering of indoor air

Determination of optimal plaster thickness for moisture buffering of indoor air The relative humidity of indoor air influences the health and wellbeing of building occupants and the integrity of the building fabric. One potential solution for regulating relative humidity is provided by the plaster used for finishing internal spaces if it has the ability to passively buffer moisture through adsorption and desorption of vapour. During the adsorption and desorption, the water vapour will only penetrate to a certain depth of the plaster. Therefore, it is important to know the minimum thickness of plaster required for the maximum buffering effect. Uniquely, this paper presents a method for determining the optimal thickness from experimental measurements on specimens of varying thickness. In this paper it is demonstrated through a novel method, that there is a thickness of material beyond which there is no increase in moisture buffering capacity. Below the optimal thickness moisture sorption increases linearly as a product of the density and specific moisture capacity. Significantly, existing numerical methods were found to overestimate the performance when compared to empirical measurements. The expected impact of this work is the increased knowledge of surrounding material performance and use, that will ultimately improve the indoor environment quality of buildings and occupant health. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

Determination of optimal plaster thickness for moisture buffering of indoor air

Loading next page...
 
/lp/elsevier/determination-of-optimal-plaster-thickness-for-moisture-buffering-of-yMIpxmbnjI
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2017.11.045
Publisher site
See Article on Publisher Site

Abstract

The relative humidity of indoor air influences the health and wellbeing of building occupants and the integrity of the building fabric. One potential solution for regulating relative humidity is provided by the plaster used for finishing internal spaces if it has the ability to passively buffer moisture through adsorption and desorption of vapour. During the adsorption and desorption, the water vapour will only penetrate to a certain depth of the plaster. Therefore, it is important to know the minimum thickness of plaster required for the maximum buffering effect. Uniquely, this paper presents a method for determining the optimal thickness from experimental measurements on specimens of varying thickness. In this paper it is demonstrated through a novel method, that there is a thickness of material beyond which there is no increase in moisture buffering capacity. Below the optimal thickness moisture sorption increases linearly as a product of the density and specific moisture capacity. Significantly, existing numerical methods were found to overestimate the performance when compared to empirical measurements. The expected impact of this work is the increased knowledge of surrounding material performance and use, that will ultimately improve the indoor environment quality of buildings and occupant health.

Journal

Building and EnvironmentElsevier

Published: Feb 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off