Determination of lymph flow in murine oral mucosa using depot clearance of near-infrared-labeled albumin

Determination of lymph flow in murine oral mucosa using depot clearance of near-infrared-labeled... The lymphatic vessels are playing an important role in inflammation since they return extravasated fluid, proteins, and cells back into the circulation and regulate immune cell trafficking. The oral mucosa, including gingiva, is well supplied with lymphatic vessels and is frequently challenged with inflammatory insults. Lymphatic vessels in gingiva protect against periodontal disease development, but quantification of lymph flow in this area has so far never been performed, due to lack of reliable methods.Mice of FVB strain (n=17) were anesthetized with isoflurane and placed on a jaw retraction board allowing the mouth to be kept open and stable. Albumin conjugated with Alexa680-fluorochrome (with or without LPS from Porphyromonas gingivalis) was injected superficially in oral mucosa mesio-buccal to the left first molar in each mouse. 60min post-injection the mouse was transferred to an OptixMX3 optical imager where the total fluorescence was measured in the posterior facial area. The measurements continued further every 60min for 7h for each mouse. The mice were awake and active between measurements. The in vivo washout of Alexa680-albumin was calculated using the natural logarithm of the relative values creating a negative slope for each mouse. Statistical analysis of variance was performed. The injection and distribution site for tracer was verified with India ink and shown to be in the interstitium below the oral mucosal epithelium, in an area well supplied with initial lymphatic vessels. Washout of the tracer Alexa680-albumin was log-linear, and the basal lymph flow calculated from depot clearance averaged −0.28±0.08%/min (n=8). The clearance was significantly faster (−0.30±0.08%/min, n=9) in acutely inflamed oral mucosa (p=0.0326).We developed a method that can successfully quantify the lymph flow in oral mucosa in steady state conditions and under acute perturbation. By use of this method, new information about the lymphatic function in oral mucosa during physiological and pathological conditions can be achieved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Immunological Methods Elsevier

Determination of lymph flow in murine oral mucosa using depot clearance of near-infrared-labeled albumin

Loading next page...
 
/lp/elsevier/determination-of-lymph-flow-in-murine-oral-mucosa-using-depot-ZQnVBjcF8k
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier B.V.
ISSN
0022-1759
D.O.I.
10.1016/j.jim.2015.06.014
Publisher site
See Article on Publisher Site

Abstract

The lymphatic vessels are playing an important role in inflammation since they return extravasated fluid, proteins, and cells back into the circulation and regulate immune cell trafficking. The oral mucosa, including gingiva, is well supplied with lymphatic vessels and is frequently challenged with inflammatory insults. Lymphatic vessels in gingiva protect against periodontal disease development, but quantification of lymph flow in this area has so far never been performed, due to lack of reliable methods.Mice of FVB strain (n=17) were anesthetized with isoflurane and placed on a jaw retraction board allowing the mouth to be kept open and stable. Albumin conjugated with Alexa680-fluorochrome (with or without LPS from Porphyromonas gingivalis) was injected superficially in oral mucosa mesio-buccal to the left first molar in each mouse. 60min post-injection the mouse was transferred to an OptixMX3 optical imager where the total fluorescence was measured in the posterior facial area. The measurements continued further every 60min for 7h for each mouse. The mice were awake and active between measurements. The in vivo washout of Alexa680-albumin was calculated using the natural logarithm of the relative values creating a negative slope for each mouse. Statistical analysis of variance was performed. The injection and distribution site for tracer was verified with India ink and shown to be in the interstitium below the oral mucosal epithelium, in an area well supplied with initial lymphatic vessels. Washout of the tracer Alexa680-albumin was log-linear, and the basal lymph flow calculated from depot clearance averaged −0.28±0.08%/min (n=8). The clearance was significantly faster (−0.30±0.08%/min, n=9) in acutely inflamed oral mucosa (p=0.0326).We developed a method that can successfully quantify the lymph flow in oral mucosa in steady state conditions and under acute perturbation. By use of this method, new information about the lymphatic function in oral mucosa during physiological and pathological conditions can be achieved.

Journal

Journal of Immunological MethodsElsevier

Published: Oct 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off