Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees

Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and... Microwave remote sensing can be used to measure ocean surface winds, which can be used to detect tropical cyclone (TC) formation in an objective and quantitative way. This study develops a new model using WindSat data and a machine learning approach. Dynamic and hydrologic indices are quantified from WindSat wind and rainfall snapshot images over 352 developing and 973 non-developing tropical disturbances from 2005 to 2009. The degree of cyclonic circulation symmetry near the system center is quantified using circular variances, and the degree of strong wind aggregation (heavy rainfall) is defined using a spatial pattern analysis program tool called FRAGSTATS. In addition, the circulation strength and convection are defined based on the areal averages of wind speed and rainfall. An objective TC formation detection model is then developed by applying those indices to a machine-learning decision tree algorithm using calibration data from 2005 to 2007. Results suggest that the circulation symmetry and intensity are the most important parameters that characterize developing tropical disturbances. Despite inherent sampling issues associated with the polar orbiting satellite, a validation from 2008 to 2009 shows that the model produced a positive detection rate of approximately 95.3% and false alarm rate of 28.5%, which is comparable with the pre-existing objective methods based on cloud-pattern recognition. This study suggests that the quantitative microwave-sensed dynamic ocean surface wind pattern and intensity recognition model provides a new method of detecting TC formation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Remote Sensing of Environment Elsevier

Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees

Loading next page...
 
/lp/elsevier/detection-of-tropical-cyclone-genesis-via-quantitative-satellite-ocean-TKO0OabfbK
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Inc.
ISSN
0034-4257
D.O.I.
10.1016/j.rse.2016.06.006
Publisher site
See Article on Publisher Site

Abstract

Microwave remote sensing can be used to measure ocean surface winds, which can be used to detect tropical cyclone (TC) formation in an objective and quantitative way. This study develops a new model using WindSat data and a machine learning approach. Dynamic and hydrologic indices are quantified from WindSat wind and rainfall snapshot images over 352 developing and 973 non-developing tropical disturbances from 2005 to 2009. The degree of cyclonic circulation symmetry near the system center is quantified using circular variances, and the degree of strong wind aggregation (heavy rainfall) is defined using a spatial pattern analysis program tool called FRAGSTATS. In addition, the circulation strength and convection are defined based on the areal averages of wind speed and rainfall. An objective TC formation detection model is then developed by applying those indices to a machine-learning decision tree algorithm using calibration data from 2005 to 2007. Results suggest that the circulation symmetry and intensity are the most important parameters that characterize developing tropical disturbances. Despite inherent sampling issues associated with the polar orbiting satellite, a validation from 2008 to 2009 shows that the model produced a positive detection rate of approximately 95.3% and false alarm rate of 28.5%, which is comparable with the pre-existing objective methods based on cloud-pattern recognition. This study suggests that the quantitative microwave-sensed dynamic ocean surface wind pattern and intensity recognition model provides a new method of detecting TC formation.

Journal

Remote Sensing of EnvironmentElsevier

Published: Sep 15, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial