Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees

Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and... Microwave remote sensing can be used to measure ocean surface winds, which can be used to detect tropical cyclone (TC) formation in an objective and quantitative way. This study develops a new model using WindSat data and a machine learning approach. Dynamic and hydrologic indices are quantified from WindSat wind and rainfall snapshot images over 352 developing and 973 non-developing tropical disturbances from 2005 to 2009. The degree of cyclonic circulation symmetry near the system center is quantified using circular variances, and the degree of strong wind aggregation (heavy rainfall) is defined using a spatial pattern analysis program tool called FRAGSTATS. In addition, the circulation strength and convection are defined based on the areal averages of wind speed and rainfall. An objective TC formation detection model is then developed by applying those indices to a machine-learning decision tree algorithm using calibration data from 2005 to 2007. Results suggest that the circulation symmetry and intensity are the most important parameters that characterize developing tropical disturbances. Despite inherent sampling issues associated with the polar orbiting satellite, a validation from 2008 to 2009 shows that the model produced a positive detection rate of approximately 95.3% and false alarm rate of 28.5%, which is comparable with the pre-existing objective methods based on cloud-pattern recognition. This study suggests that the quantitative microwave-sensed dynamic ocean surface wind pattern and intensity recognition model provides a new method of detecting TC formation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Remote Sensing of Environment Elsevier

Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees

Loading next page...
 
/lp/elsevier/detection-of-tropical-cyclone-genesis-via-quantitative-satellite-ocean-TKO0OabfbK
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Inc.
ISSN
0034-4257
D.O.I.
10.1016/j.rse.2016.06.006
Publisher site
See Article on Publisher Site

Abstract

Microwave remote sensing can be used to measure ocean surface winds, which can be used to detect tropical cyclone (TC) formation in an objective and quantitative way. This study develops a new model using WindSat data and a machine learning approach. Dynamic and hydrologic indices are quantified from WindSat wind and rainfall snapshot images over 352 developing and 973 non-developing tropical disturbances from 2005 to 2009. The degree of cyclonic circulation symmetry near the system center is quantified using circular variances, and the degree of strong wind aggregation (heavy rainfall) is defined using a spatial pattern analysis program tool called FRAGSTATS. In addition, the circulation strength and convection are defined based on the areal averages of wind speed and rainfall. An objective TC formation detection model is then developed by applying those indices to a machine-learning decision tree algorithm using calibration data from 2005 to 2007. Results suggest that the circulation symmetry and intensity are the most important parameters that characterize developing tropical disturbances. Despite inherent sampling issues associated with the polar orbiting satellite, a validation from 2008 to 2009 shows that the model produced a positive detection rate of approximately 95.3% and false alarm rate of 28.5%, which is comparable with the pre-existing objective methods based on cloud-pattern recognition. This study suggests that the quantitative microwave-sensed dynamic ocean surface wind pattern and intensity recognition model provides a new method of detecting TC formation.

Journal

Remote Sensing of EnvironmentElsevier

Published: Sep 15, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off