Detection of natural crack in wind turbine gearbox

Detection of natural crack in wind turbine gearbox One of the most challenging scenarios in bearing diagnosis is the extraction of fault signatures from within other strong components which mask the vibration signal. Usually, the bearing vibration signals are dominated by those of other components such as gears and shafts. A good example of this scenario is the wind turbine gearbox which presents one of the most difficult bearing detection tasks. The non-stationary signal analysis is considered one of the main topics in the field of machinery fault diagnosis. In this paper, a set of signal processing techniques has been studied to investigate their feasibility for bearing fault detection in wind turbine gearbox. These techniques include statistical condition indicators, spectral kurtosis, and envelope analysis. The results of vibration analysis showed the possibility of bearing fault detection in wind turbine high-speed shafts using multiple signal processing techniques. However, among these signal processing techniques, spectral kurtosis followed by envelope analysis provides early fault detection compared to the other techniques employed. In addition, outer race bearing fault indicator provides clear indication of the crack severity and progress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

Detection of natural crack in wind turbine gearbox

Loading next page...
 
/lp/elsevier/detection-of-natural-crack-in-wind-turbine-gearbox-mtunJbwlwi
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2017.10.104
Publisher site
See Article on Publisher Site

Abstract

One of the most challenging scenarios in bearing diagnosis is the extraction of fault signatures from within other strong components which mask the vibration signal. Usually, the bearing vibration signals are dominated by those of other components such as gears and shafts. A good example of this scenario is the wind turbine gearbox which presents one of the most difficult bearing detection tasks. The non-stationary signal analysis is considered one of the main topics in the field of machinery fault diagnosis. In this paper, a set of signal processing techniques has been studied to investigate their feasibility for bearing fault detection in wind turbine gearbox. These techniques include statistical condition indicators, spectral kurtosis, and envelope analysis. The results of vibration analysis showed the possibility of bearing fault detection in wind turbine high-speed shafts using multiple signal processing techniques. However, among these signal processing techniques, spectral kurtosis followed by envelope analysis provides early fault detection compared to the other techniques employed. In addition, outer race bearing fault indicator provides clear indication of the crack severity and progress.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial