Detection of natural crack in wind turbine gearbox

Detection of natural crack in wind turbine gearbox One of the most challenging scenarios in bearing diagnosis is the extraction of fault signatures from within other strong components which mask the vibration signal. Usually, the bearing vibration signals are dominated by those of other components such as gears and shafts. A good example of this scenario is the wind turbine gearbox which presents one of the most difficult bearing detection tasks. The non-stationary signal analysis is considered one of the main topics in the field of machinery fault diagnosis. In this paper, a set of signal processing techniques has been studied to investigate their feasibility for bearing fault detection in wind turbine gearbox. These techniques include statistical condition indicators, spectral kurtosis, and envelope analysis. The results of vibration analysis showed the possibility of bearing fault detection in wind turbine high-speed shafts using multiple signal processing techniques. However, among these signal processing techniques, spectral kurtosis followed by envelope analysis provides early fault detection compared to the other techniques employed. In addition, outer race bearing fault indicator provides clear indication of the crack severity and progress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

Detection of natural crack in wind turbine gearbox

Loading next page...
 
/lp/elsevier/detection-of-natural-crack-in-wind-turbine-gearbox-mtunJbwlwi
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2017.10.104
Publisher site
See Article on Publisher Site

Abstract

One of the most challenging scenarios in bearing diagnosis is the extraction of fault signatures from within other strong components which mask the vibration signal. Usually, the bearing vibration signals are dominated by those of other components such as gears and shafts. A good example of this scenario is the wind turbine gearbox which presents one of the most difficult bearing detection tasks. The non-stationary signal analysis is considered one of the main topics in the field of machinery fault diagnosis. In this paper, a set of signal processing techniques has been studied to investigate their feasibility for bearing fault detection in wind turbine gearbox. These techniques include statistical condition indicators, spectral kurtosis, and envelope analysis. The results of vibration analysis showed the possibility of bearing fault detection in wind turbine high-speed shafts using multiple signal processing techniques. However, among these signal processing techniques, spectral kurtosis followed by envelope analysis provides early fault detection compared to the other techniques employed. In addition, outer race bearing fault indicator provides clear indication of the crack severity and progress.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off