Detection of Cd, Pb, and Cu in non-pretreated natural waters and urine with thiol functionalized mesoporous silica and Nafion composite electrodes

Detection of Cd, Pb, and Cu in non-pretreated natural waters and urine with thiol functionalized... Electrochemical sensors have great potential for environmental monitoring of toxic metal ions in waters due to their portability, field-deployability and excellent detection limits. However, electrochemical sensors employing mercury-free approaches typically suffer from binding competition for metal ions and fouling by organic substances and surfactants in natural waters, making sample pretreatments such as wet ashing necessary. In this work, we have developed mercury-free sensors by coating a composite of thiol self-assembled monolayers on mesoporous supports (SH-SAMMS™) and Nafion on glassy-carbon electrodes. With the combined benefit of SH-SAMMS™ as an outstanding metal preconcentrator and Nafion as an antifouling binder, the sensors could detect 0.5 ppb of Pb and 2.5 ppb of Cd in river water, Hanford groundwater, and seawater with a minimal amount of preconcentration time (few minutes) and without any sample pretreatment. The sensor could also detect 2.5 ppb of Cd, Pb, and Cu simultaneously. The electrodes have long service times and excellent single and inter-electrode reproducibility (5% R.S.D. after 8 consecutive measurements). Unlike SAMMS™-carbon paste electrodes, the SAMMS™-Nafion electrodes were not fouled in samples containing albumin and successfully detected Cd in human urine. Other potentially confounding factors affecting metal detection at SAMMS™-Nafion electrodes were studied, including pH effect, transport resistance of metal ions, and detection interference. With the ability to reliably detect low metal concentration ranges without sample pretreatment and fouling, SAMMS™-Nafion composite sensors have the potential to become the next-generation metal analyzers for environmental and bio-monitoring of toxic metals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analytica Chimica Acta Elsevier

Detection of Cd, Pb, and Cu in non-pretreated natural waters and urine with thiol functionalized mesoporous silica and Nafion composite electrodes

Loading next page...
 
/lp/elsevier/detection-of-cd-pb-and-cu-in-non-pretreated-natural-waters-and-urine-z1xyoNKYUy
Publisher
Elsevier
Copyright
Copyright © 2008 Elsevier B.V.
ISSN
0003-2670
eISSN
1873-4324
DOI
10.1016/j.aca.2008.05.029
pmid
18558124
Publisher site
See Article on Publisher Site

Abstract

Electrochemical sensors have great potential for environmental monitoring of toxic metal ions in waters due to their portability, field-deployability and excellent detection limits. However, electrochemical sensors employing mercury-free approaches typically suffer from binding competition for metal ions and fouling by organic substances and surfactants in natural waters, making sample pretreatments such as wet ashing necessary. In this work, we have developed mercury-free sensors by coating a composite of thiol self-assembled monolayers on mesoporous supports (SH-SAMMS™) and Nafion on glassy-carbon electrodes. With the combined benefit of SH-SAMMS™ as an outstanding metal preconcentrator and Nafion as an antifouling binder, the sensors could detect 0.5 ppb of Pb and 2.5 ppb of Cd in river water, Hanford groundwater, and seawater with a minimal amount of preconcentration time (few minutes) and without any sample pretreatment. The sensor could also detect 2.5 ppb of Cd, Pb, and Cu simultaneously. The electrodes have long service times and excellent single and inter-electrode reproducibility (5% R.S.D. after 8 consecutive measurements). Unlike SAMMS™-carbon paste electrodes, the SAMMS™-Nafion electrodes were not fouled in samples containing albumin and successfully detected Cd in human urine. Other potentially confounding factors affecting metal detection at SAMMS™-Nafion electrodes were studied, including pH effect, transport resistance of metal ions, and detection interference. With the ability to reliably detect low metal concentration ranges without sample pretreatment and fouling, SAMMS™-Nafion composite sensors have the potential to become the next-generation metal analyzers for environmental and bio-monitoring of toxic metals.

Journal

Analytica Chimica ActaElsevier

Published: Jul 14, 2008

References

  • Electroanalysis
    Mikkelsen, O.; Schroder, K.H.
  • Anal. Chim. Acta
    van Staden, J.F.; Matoetoe, M.C.
  • Anal. Chim. Acta
    Achterberg, E.P.; van den Berg, C.M.G.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off