Detecting white matter activity using conventional 3 Tesla fMRI: An evaluation of standard field strength and hemodynamic response function

Detecting white matter activity using conventional 3 Tesla fMRI: An evaluation of standard field... Detection of functional magnetic resonance imaging (fMRI) activation in white matter has been increasingly reported despite historically being controversial. Much of the development work to-date has used high-field 4 T MRI and specialized pulse sequences. In the current study, we utilized conventional 3 T MRI and a commonly applied gradient-echo-planar imaging sequence to evaluate white matter (WM) fMRI sensitivity within a common framework. Functional WM activity was replicated in target regions of interest within the corpus callosum, at the group and individual levels. As expected there was a reduction in overall WM activation sensitivity. Individual analyses revealed that 8 of the 13 individuals showed white matter activation, showing a lower percentage of individuals with WM activation detected. Importantly, WM activation results were sensitive to analyses that applied alternate hemodynamic response functions, with an increase in the group level cluster when hemodynamic response function (HRF) onset slope was reduced. The findings supported the growing evidence that WM activation is detectable, with activation levels are closer to thresholds used for routine 3T MRI studies. Optimization factors, such as the HRF model, appear to be important to further enhance the characterization of WM activity in fMRI. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Detecting white matter activity using conventional 3 Tesla fMRI: An evaluation of standard field strength and hemodynamic response function

Loading next page...
 
/lp/elsevier/detecting-white-matter-activity-using-conventional-3-tesla-fmri-an-F9cXcr0dzq
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2017.12.008
Publisher site
See Article on Publisher Site

Abstract

Detection of functional magnetic resonance imaging (fMRI) activation in white matter has been increasingly reported despite historically being controversial. Much of the development work to-date has used high-field 4 T MRI and specialized pulse sequences. In the current study, we utilized conventional 3 T MRI and a commonly applied gradient-echo-planar imaging sequence to evaluate white matter (WM) fMRI sensitivity within a common framework. Functional WM activity was replicated in target regions of interest within the corpus callosum, at the group and individual levels. As expected there was a reduction in overall WM activation sensitivity. Individual analyses revealed that 8 of the 13 individuals showed white matter activation, showing a lower percentage of individuals with WM activation detected. Importantly, WM activation results were sensitive to analyses that applied alternate hemodynamic response functions, with an increase in the group level cluster when hemodynamic response function (HRF) onset slope was reduced. The findings supported the growing evidence that WM activation is detectable, with activation levels are closer to thresholds used for routine 3T MRI studies. Optimization factors, such as the HRF model, appear to be important to further enhance the characterization of WM activity in fMRI.

Journal

NeuroimageElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off