Detecting Himalayan glacial lake outburst floods from Landsat time series

Detecting Himalayan glacial lake outburst floods from Landsat time series Several thousands of moraine-dammed and supraglacial lakes spread over the Hindu Kush Himalayan (HKH) region, and some have grown rapidly in past decades due to glacier retreat. The sudden emptying of these lakes releases large volumes of water and sediment in destructive glacial lake outburst floods (GLOFs), one of the most publicised natural hazards to the rapidly growing Himalayan population. Despite the growing number and size of glacial lakes, the frequency of documented GLOFs is remarkably constant. We explore this possible reporting bias and offer a new processing chain for establishing a more complete Himalayan GLOF inventory. We make use of the full seasonal archive of Landsat images between 1988 and 2016, and track automatically where GLOFs left shrinking water bodies, and tails of sediment at high elevations. We trained a Random Forest classifier to generate fuzzy land cover maps for 2491 images, achieving overall accuracies of 91%. We developed a likelihood-based change point technique to estimate the timing of GLOFs at the pixel scale. Our method objectively detected ten out of eleven documented GLOFs, and another ten lakes that gave rise to previously unreported GLOFs. We thus nearly doubled the existing GLOF record for a study area covering ~10% of the HKH region. Remaining challenges for automatically detecting GLOFs include image insufficiently accurate co-registration, misclassifications in the land cover maps and image noise from clouds, shadows or ice. Yet our processing chain is robust and has the potential for being applied on the greater HKH and mountain ranges elsewhere, opening the door for objectively expanding the knowledge base on GLOF activity over the past three decades. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Remote Sensing of Environment Elsevier

Detecting Himalayan glacial lake outburst floods from Landsat time series

Loading next page...
 
/lp/elsevier/detecting-himalayan-glacial-lake-outburst-floods-from-landsat-time-0l8Y8sACcG
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0034-4257
D.O.I.
10.1016/j.rse.2017.12.025
Publisher site
See Article on Publisher Site

Abstract

Several thousands of moraine-dammed and supraglacial lakes spread over the Hindu Kush Himalayan (HKH) region, and some have grown rapidly in past decades due to glacier retreat. The sudden emptying of these lakes releases large volumes of water and sediment in destructive glacial lake outburst floods (GLOFs), one of the most publicised natural hazards to the rapidly growing Himalayan population. Despite the growing number and size of glacial lakes, the frequency of documented GLOFs is remarkably constant. We explore this possible reporting bias and offer a new processing chain for establishing a more complete Himalayan GLOF inventory. We make use of the full seasonal archive of Landsat images between 1988 and 2016, and track automatically where GLOFs left shrinking water bodies, and tails of sediment at high elevations. We trained a Random Forest classifier to generate fuzzy land cover maps for 2491 images, achieving overall accuracies of 91%. We developed a likelihood-based change point technique to estimate the timing of GLOFs at the pixel scale. Our method objectively detected ten out of eleven documented GLOFs, and another ten lakes that gave rise to previously unreported GLOFs. We thus nearly doubled the existing GLOF record for a study area covering ~10% of the HKH region. Remaining challenges for automatically detecting GLOFs include image insufficiently accurate co-registration, misclassifications in the land cover maps and image noise from clouds, shadows or ice. Yet our processing chain is robust and has the potential for being applied on the greater HKH and mountain ranges elsewhere, opening the door for objectively expanding the knowledge base on GLOF activity over the past three decades.

Journal

Remote Sensing of EnvironmentElsevier

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off